Biblio
Wireless technology has seen a tremendous growth in the recent past. Orthogonal Frequency Division Multiplexing (OFDM) modulation scheme has been utilized in almost all the advanced wireless techniques because of the advantages it offers. Hence in this aspect, SystemVue based OFDM transceiver has been developed with AWGN as the channel noise. To mitigate the channel noise Convolutional code with Viterbi decoder has been depicted. Further to protect the information from the malicious users the data is scrambled with the aid of gold codes. The performance of the transceiver is analysed through various Bit Error Rate (BER) versus Signal to Noise Ratio (SNR) graphs.
Video Steganography is an extension of image steganography where any kind of file in any extension is hidden into a digital video. The video content is dynamic in nature and this makes the detection of hidden data difficult than other steganographic techniques. The main motive of using video steganography is that the videos can store large amount of data in it. This paper focuses on security using the combination of hybrid neural networks and hash function for determining the best bits in the cover video to embed the secret data. For the embedding process, the cover video and the data to be hidden is uploaded. Then the hash algorithm and neural networks are applied to form the stego video. For the extraction process, the reverse process is applied and the secret data is obtained. All experiments are done using MatLab2016a software.
Comment spam is one of the great challenges faced by forum administrators. Detecting and blocking comment spam can relieve the load on servers, improve user experience and purify the network conditions. This paper focuses on the detection of comment spam. The behaviors of spammer and the content of spam were analyzed. According to analysis results, two types of effective features are extracted which can make a better description of spammer characteristics. Additionally, a gradient boosting tree algorithm was used to construct the comment spam detector based on the extracted features. Our proposed method is examined on a blog spam dataset which was published by previous research, and the result illustrates that our method performs better than the previous method on detection accuracy. Moreover, the CPU time is recorded to demonstrate that the time spent on both training and testing maintains a small value.
Currently, organisations find it difficult to design a Decision Support System (DSS) that can predict various operational risks, such as financial and quality issues, with operational risks responsible for significant economic losses and damage to an organisation's reputation in the market. This paper proposes a new DSS for risk assessment, called the Fuzzy Inference DSS (FIDSS) mechanism, which uses fuzzy inference methods based on an organisation's big data collection. It includes the Emerging Association Patterns (EAP) technique that identifies the important features of each risk event. Then, the Mamdani fuzzy inference technique and several membership functions are evaluated using the firm's data sources. The FIDSS mechanism can enhance an organisation's decision-making processes by quantifying the severity of a risk as low, medium or high. When it automatically predicts a medium or high level, it assists organisations in taking further actions that reduce this severity level.
The operating system is extremely important for both "Made in China 2025" and ubiquitous electric power Internet of Things. By investigating of five key requirements for ubiquitous electric power Internet of Things at the OS level (performance, ecosystem, information security, functional security, developer framework), this paper introduces the intelligent NARI microkernel Operating System and its innovative schemes. It is implemented with microkernel architecture based on the trusted computing. Some technologies such as process based fine-grained real-time scheduling algorithm, sigma0 efficient message channel and service process binding in multicore are applied to improve system performance. For better ecological expansion, POSIX standard API is compatible, Linux container, embedded virtualization and intelligent interconnection technology are supported. Native process sandbox and mimicry defense are considered for security mechanism design. Multi-level exception handling and multidimensional partition isolation are adopted to provide High Reliability. Theorem-assisted proof tools based on Isabelle/HOL is used to verify the design and implementation of NARI microkernel OS. Developer framework including tools, kit and specification is discussed when developing both system software and user software on this IoT OS.
Vehicular networks are susceptible to variety of attacks such as denial of service (DoS) attack, sybil attack and false alert generation attack. Different cryptographic methods have been proposed to protect vehicular networks from these kind of attacks. However, cryptographic methods have been found to be less effective to protect from insider attacks which are generated within the vehicular network system. Misbehavior detection system is found to be more effective to detect and prevent insider attacks. In this paper, we propose a machine learning based misbehavior detection system which is trained using datasets generated through extensive simulation based on realistic vehicular network environment. The simulation results demonstrate that our proposed scheme outperforms previous methods in terms of accurately identifying various misbehavior.
Quick UDP Internet Connections (QUIC) is an experimental transport protocol designed to primarily reduce connection establishment and transport latency, as well as to improve security standards with default end-to-end encryption in HTTPbased applications. QUIC is a multiplexed and secure transport protocol fostered by Google and its design emerged from the urgent need of innovation in the transport layer, mainly due to difficulties extending TCP and deploying new protocols. While still under standardisation, a non-negligble fraction of the Internet's traffic, more than 7% of a European Tier1-ISP, is already running over QUIC and it constitutes more than 30% of Google's egress traffic [1].
Quantum low probability of intercept transmits ciphertext in a way that prevents an eavesdropper possessing the decryption key from recovering the plaintext. It is capable of Gbps communication rates on optical fiber over metropolitan-area distances.