Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2019-06-10
Li, T., Ma, J., Pei, Q., Shen, Y., Sun, C..  2018.  Log-based Anomalies Detection of MANETs Routing with Reasoning and Verification. 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). :240–246.

Routing security plays an important role in Mobile Ad hoc Networks (MANETs). Despite many attempts to improve its security, the routing procedure of MANETs remains vulnerable to attacks. Existing approaches offer support for detecting attacks or debugging in different routing phases, but many of them have not considered the privacy of the nodes during the anomalies detection, which depend on the central control program or a third party to supervise the whole network. In this paper, we present an approach called LAD which uses the raw logs of routers to construct control a flow graph and find the existing communication rules in MANETs. With the reasoning rules, LAD can detect both active and passive attacks launched during the routing phase. LAD can also protect the privacy of the nodes in the verification phase with the specific Merkle hash tree. Without deploying any special nodes to assist the verification, LAD can detect multiple malicious nodes by itself. To show that our approach can be used to guarantee the security of the MANETs, we deploy our experiment in NS3 as well as the practical router environment. LAD can improve the accuracy rate from 2.28% to 29.22%. The results show that LAD performs limited time and memory usages, high detection and low false positives.

2019-10-23
Lee, Hojoon, Song, Chihyun, Kang, Brent Byunghoon.  2018.  Lord of the X86 Rings: A Portable User Mode Privilege Separation Architecture on X86. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1441-1454.

Modern applications often involve processing of sensitive information. However, the lack of privilege separation within the user space leaves sensitive application secret such as cryptographic keys just as unprotected as a "hello world" string. Cutting-edge hardware-supported security features are being introduced. However, the features are often vendor-specific or lack compatibility with older generations of the processors. The situation leaves developers with no portable solution to incorporate protection for the sensitive application component. We propose LOTRx86, a fundamental and portable approach for user-space privilege separation. Our approach creates a more privileged user execution layer called PrivUser by harnessing the underused intermediate privilege levels on the x86 architecture. The PrivUser memory space, a set of pages within process address space that are inaccessible to user mode, is a safe place for application secrets and routines that access them. We implement the LOTRx86 ABI that exports the privcall interface to users to invoke secret handling routines in PrivUser. This way, sensitive application operations that involve the secrets are performed in a strictly controlled manner. The memory access control in our architecture is privilege-based, accessing the protected application secret only requires a change in the privilege, eliminating the need for costly remote procedure calls or change in address space. We evaluated our platform by developing a proof-of-concept LOTRx86-enabled web server that employs our architecture to securely access its private key during an SSL connection. We conducted a set of experiments including a performance measurement on the PoC on both Intel and AMD PCs, and confirmed that LOTRx86 incurs only a limited performance overhead.

2019-01-31
Xu, Ke, Li, Yu, Huang, Bo, Liu, Xiangkai, Wang, Hong, Wu, Zhuoyan, Yan, Zhanpeng, Tu, Xueying, Wu, Tongqing, Zeng, Daibing.  2018.  A Low-Power 4096x2160@30Fps H.265/HEVC Video Encoder for Smart Video Surveillance. Proceedings of the International Symposium on Low Power Electronics and Design. :38:1–38:6.

This paper presents the design and VLSI implementation of a low-power HEVC main profile encoder, which is able to process up to 4096x2160@30fps 4:2:0 encoding in real-time with five-stage pipeline architecture. A pyramid ME (Motion Estimation) engine is employed to reduce search complexity. To compensate for the video sequences with fast moving objects, GME (Global Motion Estimation) are introduced to alleviate the effect of limited search range. We also implement an alternative 5x5 search along with 3x3 to boost video quality. For intra mode decision, original pixels, instead of reconstructed ones are used to reduce pipeline stall. The encoder supports DVFS (Dynamic Voltage and Frequency Scaling) and features three operating modes, which helps to reduce power consumption by 25%. Scalable quality that trades encoding quality for power by reducing size of search range and intra prediction candidates, achieves 11.4% power reduction with 3.5% quality degradation. Furthermore, a lossless frame buffer compression is proposed which reduced DDR bandwidth by 49.1% and power consumption by 13.6%. The entire video surveillance SoC is fabricated with TSMC 28nm technology with 1.96 mm2 area. It consumes 2.88M logic gates and 117KB SRAM. The measured power consumption is 103mW at 350MHz for 4K encoding with high-quality mode. The 0.39nJ/pixel of energy efficiency of this work, which achieves 42% $\backslash$textasciitilde 97% power reduction as compared with reference designs, make it ideal for real-time low-power smart video surveillance applications.

2019-09-26
Wang, Fei, Kwon, Yonghwi, Ma, Shiqing, Zhang, Xiangyu, Xu, Dongyan.  2018.  Lprov: Practical Library-Aware Provenance Tracing. Proceedings of the 34th Annual Computer Security Applications Conference. :605-617.

With the continuing evolution of sophisticated APT attacks, provenance tracking is becoming an important technique for efficient attack investigation in enterprise networks. Most of existing provenance techniques are operating on system event auditing that discloses dependence relationships by scrutinizing syscall traces. Unfortunately, such auditing-based provenance is not able to track the causality of another important dimension in provenance, the shared libraries. Different from other data-only system entities like files and sockets, dynamic libraries are linked at runtime and may get executed, which poses new challenges in provenance tracking. For example, library provenance cannot be tracked by syscalls and mapping; whether a library function is called and how it is called within an execution context is invisible at syscall level; linking a library does not promise their execution at runtime. Addressing these challenges is critical to tracking sophisticated attacks leveraging libraries. In this paper, to facilitate fine-grained investigation inside the execution of library binaries, we develop Lprov, a novel provenance tracking system which combines library tracing and syscall tracing. Upon a syscall, Lprov identifies the library calls together with the stack which induces it so that the library execution provenance can be accurately revealed. Our evaluation shows that Lprov can precisely identify attack provenance involving libraries, including malicious library attack and library vulnerability exploitation, while syscall-based provenance tools fail to identify. It only incurs 7.0% (in geometric mean) runtime overhead and consumes 3 times less storage space of a state-of-the-art provenance tool.

2019-01-21
Chernis, Boris, Verma, Rakesh.  2018.  Machine Learning Methods for Software Vulnerability Detection. Proceedings of the Fourth ACM International Workshop on Security and Privacy Analytics. :31–39.

Software vulnerabilities are a primary concern in the IT security industry, as malicious hackers who discover these vulnerabilities can often exploit them for nefarious purposes. However, complex programs, particularly those written in a relatively low-level language like C, are difficult to fully scan for bugs, even when both manual and automated techniques are used. Since analyzing code and making sure it is securely written is proven to be a non-trivial task, both static analysis and dynamic analysis techniques have been heavily investigated, and this work focuses on the former. The contribution of this paper is a demonstration of how it is possible to catch a large percentage of bugs by extracting text features from functions in C source code and analyzing them with a machine learning classifier. Relatively simple features (character count, character diversity, entropy, maximum nesting depth, arrow count, "if" count, "if" complexity, "while" count, and "for" count) were extracted from these functions, and so were complex features (character n-grams, word n-grams, and suffix trees). The simple features performed unexpectedly better compared to the complex features (74% accuracy compared to 69% accuracy).

2019-12-18
Dao, Nhu-Ngoc, Vu, Duc-Nghia, Lee, Yunseong, Park, Minho, Cho, Sungrae.  2018.  MAEC-X: DDoS Prevention Leveraging Multi-Access Edge Computing. 2018 International Conference on Information Networking (ICOIN). :245-248.

The convergence of access networks in the fifth-generation (5G) evolution promises multi-tier networking infrastructures for the successes of various applications realizing the Internet-of-Everything era. However, in this context, the support of a massive number of connected devices also opens great opportunities for attackers to exploit these devices in illegal actions against their victims, especially within the distributed denial-of-services (DDoS) attacks. Nowadays, DDoS prevention still remains an open issue in term of performance improvement although there is a significant number of existing solutions have been proposed in the literature. In this paper, we investigate the advances of multi-access edge computing (MAEC), which is considered as one of the most important emerging technologies in 5G networks, in order to provide an effective DDoS prevention solution (referred to be MAEC-X). The proposed MAEC-X architecture and mechanism are developed as well as proved its effectiveness against DDoS attacks through intensive security analysis.

2019-05-01
Zhu, Dandan, Dai, Lei, Zhang, Guokai, Shao, Xuan, Luo, Ye, Lu, Jianwei.  2018.  MAFL: Multi-Scale Adversarial Feature Learning for Saliency Detection. Proceedings of the 2018 International Conference on Control and Computer Vision. :90-95.

Previous saliency detection methods usually focus on extracting features to deal with the complex background in an image. However, these methods cannot effectively capture the semantic information of images. In recent years, Generative Adversarial Network (GAN) has become a prevalent research topic. Experiments show that GAN has ability to generate high quality images that look like natural images. Inspired by the effectiveness of GAN feature learning, we propose a novel multi-scale adversarial feature learning (MAFL) model for saliency detection. In particular, we model the complete framework of saliency detection is based on two deep CNN modules: the multi-scale G-network takes natural images as inputs and generates corresponding synthetic saliency map, and we designed a novel layer in D-network, namely a correlation layer, which is used to determine whether one image is a synthetic saliency map or ground-truth saliency map. Quantitative and qualitative experiments on three benchmark datasets demonstrate that our method outperforms seven state-of-the-art methods.

2019-02-08
Clark, G., Doran, M., Glisson, W..  2018.  A Malicious Attack on the Machine Learning Policy of a Robotic System. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :516-521.

The field of robotics has matured using artificial intelligence and machine learning such that intelligent robots are being developed in the form of autonomous vehicles. The anticipated widespread use of intelligent robots and their potential to do harm has raised interest in their security. This research evaluates a cyberattack on the machine learning policy of an autonomous vehicle by designing and attacking a robotic vehicle operating in a dynamic environment. The primary contribution of this research is an initial assessment of effective manipulation through an indirect attack on a robotic vehicle using the Q learning algorithm for real-time routing control. Secondly, the research highlights the effectiveness of this attack along with relevant artifact issues.

2019-01-16
Varshney, G., Bagade, S., Sinha, S..  2018.  Malicious browser extensions: A growing threat: A case study on Google Chrome: Ongoing work in progress. 2018 International Conference on Information Networking (ICOIN). :188–193.

Browser extensions are a way through which third party developers provide a set of additional functionalities on top of the traditional functionalities provided by a browser. It has been identified that the browser extension platform can be used by hackers to carry out attacks of sophisticated kinds. These attacks include phishing, spying, DDoS, email spamming, affiliate fraud, mal-advertising, payment frauds etc. In this paper, we showcase the vulnerability of the current browsers to these attacks by taking Google Chrome as the case study as it is a popular browser. The paper also discusses the technical reason which makes it possible for the attackers to launch such attacks via browser extensions. A set of suggestions and solutions that can thwart the attack possibilities has been discussed.

2019-06-24
Wright, D., Stroschein, J..  2018.  A Malware Analysis and Artifact Capture Tool. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :328–333.

Malware authors attempt to obfuscate and hide their code in its static and dynamic states. This paper provides a novel approach to aid analysis by intercepting and capturing malware artifacts and providing dynamic control of process flow. Capturing malware artifacts allows an analyst to more quickly and comprehensively understand malware behavior and obfuscation techniques and doing so interactively allows multiple code paths to be explored. The faster that malware can be analyzed the quicker the systems and data compromised by it can be determined and its infection stopped. This research proposes an instantiation of an interactive malware analysis and artifact capture tool.

2019-09-26
Pang, Chengbin, Du, Yunlan, Mao, Bing, Guo, Shanqing.  2018.  Mapping to Bits: Efficiently Detecting Type Confusion Errors. Proceedings of the 34th Annual Computer Security Applications Conference. :518-528.

The features of modularity and inheritance in C++ facilitate the developers' usage, but also give rise to the problem of type confusion. As an ancestor class may have a different data layout from its descendant class, a dangerous downcasting operation from the ancestor to its descendant can lead to a critical attack, such as control flow hijacking, out-of-bounds access to neighbor memory area, etc. As reported in CVE, such vulnerabilities have been found in various common-used software, including Google Chrome, Firefox and Adobe Flash Player, and have a trend of increase in recent years. The urgency of addressing type confusion problems quickens the pace of researchers coming to corresponding solutions. However, the existing works either handle the problem partially, or suffer from the high performance and memory overhead, especially to the large-scale projects. We present Bitype to check the validity explicitly when a type is downcasting to another, maintaining high coverage and reducing overhead and compilation time massively. The core of our design is a Safe Encoding Scheme, which encodes all of the classes by mapping them to bits. With this scheme, Bitype treats the classes and their safe convertible classes as codes and verifies typecastings in an xor operation, both decreasing the performance overhead of check and the memory overhead. Besides, we implement a Clang Tool to avoid the repeated collection of inheritance relationships and deploy a two-level lookup table to trace objects efficiently. Evaluated on SPEC CPU2006 benchmarks and Firefox browser, Bitype shows a slightly higher coverage of typecasting compared to the state-of-the-art HexType[22], but reduces the performance overhead by 2 to 16 times, the memory overhead by 2 to 3 times, the compilation time by 21 to 223 times. As a result, our solution is a practical and efficient typecasting checker for commodity software.

2019-02-08
Viand, Alexander, Shafagh, Hossein.  2018.  Marble: Making Fully Homomorphic Encryption Accessible to All. Proceedings of the 6th Workshop on Encrypted Computing & Applied Homomorphic Cryptography. :49-60.

With the recent explosion of data breaches and data misuse cases, there is more demand than ever for secure system designs that fundamentally tackle today's data trust models. One promising alternative to today's trust model is true end-to-end encryption without however compromising user experience nor data utility. Fully homomorphic encryption (FHE) provides a powerful tool in empowering users with more control over their data, while still benefiting from computing services of remote services, though without trusting them with plaintext data. However, due to the complexity of fully homomorphic encryption, it has remained reserved exclusively for a small group of domain experts. With our system Marble, we make FHE accessible to the broader community of researchers and developers. Marble takes away the complexity of setup and configuration associated with FHE schemes. It provides a familiar programming environment. Marble allows rapid feasibility assessment and development of FHE-based applications. More importantly, Marble benchmarks the overall performance of an FHE-based application, as part of the feasibility assessment. With real-world application case-studies, we show the practicality of Marble.

2020-04-20
Esquivel-Quiros, Luis Gustavo, Barrantes, Elena Gabriela, Darlington, Fernando Esponda.  2018.  Measuring data privacy preserving and machine learning. 2018 7th International Conference On Software Process Improvement (CIMPS). :85–94.

The increasing publication of large amounts of data, theoretically anonymous, can lead to a number of attacks on the privacy of people. The publication of sensitive data without exposing the data owners is generally not part of the software developers concerns. The regulations for the data privacy-preserving create an appropriate scenario to focus on privacy from the perspective of the use or data exploration that takes place in an organization. The increasing number of sanctions for privacy violations motivates the systematic comparison of three known machine learning algorithms in order to measure the usefulness of the data privacy preserving. The scope of the evaluation is extended by comparing them with a known privacy preservation metric. Different parameter scenarios and privacy levels are used. The use of publicly available implementations, the presentation of the methodology, explanation of the experiments and the analysis allow providing a framework of work on the problem of the preservation of privacy. Problems are shown in the measurement of the usefulness of the data and its relationship with the privacy preserving. The findings motivate the need to create optimized metrics on the privacy preferences of the owners of the data since the risks of predicting sensitive attributes by means of machine learning techniques are not usually eliminated. In addition, it is shown that there may be a hundred percent, but it cannot be measured. As well as ensuring adequate performance of machine learning models that are of interest to the organization that data publisher.

2019-11-26
Kim, Seoung Kyun, Ma, Zane, Murali, Siddharth, Mason, Joshua, Miller, Andrew, Bailey, Michael.  2018.  Measuring Ethereum Network Peers. Proceedings of the Internet Measurement Conference 2018. :91-104.

Ethereum, the second-largest cryptocurrency valued at a peak of \$138 billion in 2018, is a decentralized, Turing-complete computing platform. Although the stability and security of Ethereum—and blockchain systems in general—have been widely-studied, most analysis has focused on application level features of these systems such as cryptographic mining challenges, smart contract semantics, or block mining operators. Little attention has been paid to the underlying peer-to-peer (P2P) networks that are responsible for information propagation and that enable blockchain consensus. In this work, we develop NodeFinder to measure this previously opaque network at scale and illuminate the properties of its nodes. We analyze the Ethereum network from two vantage points: a three-month long view of nodes on the P2P network, and a single day snapshot of the Ethereum Mainnet peers. We uncover a noisy DEVp2p ecosystem in which fewer than half of all nodes contribute to the Ethereum Mainnet. Through a comparison with other previously studied P2P networks including BitTorrent, Gnutella, and Bitcoin, we find that Ethereum differs in both network size and geographical distribution.

2019-01-31
Li, Shuai, Guo, Huajun, Hopper, Nicholas.  2018.  Measuring Information Leakage in Website Fingerprinting Attacks and Defenses. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1977–1992.

Tor provides low-latency anonymous and uncensored network access against a local or network adversary. Due to the design choice to minimize traffic overhead (and increase the pool of potential users) Tor allows some information about the client's connections to leak. Attacks using (features extracted from) this information to infer the website a user visits are called Website Fingerprinting (WF) attacks. We develop a methodology and tools to measure the amount of leaked information about a website. We apply this tool to a comprehensive set of features extracted from a large set of websites and WF defense mechanisms, allowing us to make more fine-grained observations about WF attacks and defenses.

2019-02-08
Johnson, Pontus, Lagerström, Robert, Ekstedt, Mathias.  2018.  A Meta Language for Threat Modeling and Attack Simulations. Proceedings of the 13th International Conference on Availability, Reliability and Security. :38:1-38:8.

Attack simulations may be used to assess the cyber security of systems. In such simulations, the steps taken by an attacker in order to compromise sensitive system assets are traced, and a time estimate may be computed from the initial step to the compromise of assets of interest. Attack graphs constitute a suitable formalism for the modeling of attack steps and their dependencies, allowing the subsequent simulation. To avoid the costly proposition of building new attack graphs for each system of a given type, domain-specific attack languages may be used. These languages codify the generic attack logic of the considered domain, thus facilitating the modeling, or instantiation, of a specific system in the domain. Examples of possible cyber security domains suitable for domain-specific attack languages are generic types such as cloud systems or embedded systems but may also be highly specialized kinds, e.g. Ubuntu installations; the objects of interest as well as the attack logic will differ significantly between such domains. In this paper, we present the Meta Attack Language (MAL), which may be used to design domain-specific attack languages such as the aforementioned. The MAL provides a formalism that allows the semi-automated generation as well as the efficient computation of very large attack graphs. We declare the formal background to MAL, define its syntax and semantics, exemplify its use with a small domain-specific language and instance model, and report on the computational performance.

2019-05-01
Seo, Sanghyun, Jeon, Yongjin, Kim, Juntae.  2018.  Meta Learning for Imbalanced Big Data Analysis by Using Generative Adversarial Networks. Proceedings of the 2018 International Conference on Big Data and Computing. :5-9.

Imbalanced big data means big data where the ratio of a certain class is relatively small compared to other classes. When the machine learning model is trained by using imbalanced big data, the problem with performance drops for the minority class occurs. For this reason, various oversampling methodologies have been proposed, but simple oversampling leads to problem of the overfitting. In this paper, we propose a meta learning methodology for efficient analysis of imbalanced big data. The proposed meta learning methodology uses the meta information of the data generated by the generative model based on Generative Adversarial Networks. It prevents the generative model from becoming too similar to the real data in minority class. Compared to the simple oversampling methodology for analyzing imbalanced big data, it is less likely to cause overfitting. Experimental results show that the proposed method can efficiently analyze imbalanced big data.

2019-02-22
Vysotska, V., Lytvyn, V., Hrendus, M., Kubinska, S., Brodyak, O..  2018.  Method of Textual Information Authorship Analysis Based on Stylometry. 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). 2:9-16.

The paper dwells on the peculiarities of stylometry technologies usage to determine the style of the author publications. Statistical linguistic analysis of the author's text allows taking advantage of text content monitoring based on Porter stemmer and NLP methods to determine the set of stop words. The latter is used in the methods of stylometry to determine the ownership of the analyzed text to a specific author in percentage points. There is proposed a formal approach to the definition of the author's style of the Ukrainian text in the article. The experimental results of the proposed method for determining the ownership of the analyzed text to a particular author upon the availability of the reference text fragment are obtained. The study was conducted on the basis of the Ukrainian scientific texts of a technical area.

2019-01-31
Sanders, Matthew W., Yue, Chuan.  2018.  Minimizing Privilege Assignment Errors in Cloud Services. Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy. :2–12.

The Principle of Least Privilege is a security objective of granting users only those accesses they need to perform their duties. Creating least privilege policies in the cloud environment with many diverse services, each with unique privilege sets, is significantly more challenging than policy creation previously studied in other environments. Such security policies are always imperfect and must balance between the security risk of granting over-privilege and the effort to correct for under-privilege. In this paper, we formally define the problem of balancing between over-privilege and under-privilege as the Privilege Error Minimization Problem (PEMP) and present a method for quantitatively scoring security policies. We design and compare three algorithms for automatically generating policies: a naive algorithm, an unsupervised learning algorithm, and a supervised learning algorithm. We present the results of evaluating these three policy generation algorithms on a real-world dataset consisting of 5.2 million Amazon Web Service (AWS) audit log entries. The application of these methods can help create policies that balance between an organization's acceptable level of risk and effort to correct under-privilege.

2019-03-28
Silva, F. R. L., Jacob, P..  2018.  Mission-Centric Risk Assessment to Improve Cyber Situational Awareness. Proceedings of the 13th International Conference on Availability, Reliability and Security. :56:1-56:8.

Cyber situational awareness has become increasingly important for proactive risk management to help detect and mitigate cyber attacks. Being aware of the importance of individual information system assets to the goal or mission of the organisation is critical to help minimise enterprise risk. However current risk assessment methodologies do not give explicit support to assess mission related asset criticality. This paper describes ongoing efforts within the H2020 PROTECTIVE project to define a practical mission-centric risk assessment methodology for use across diverse organisation types.

2019-06-10
Hu, Y., Li, X., Liu, J., Ding, H., Gong, Y., Fang, Y..  2018.  Mitigating Traffic Analysis Attack in Smartphones with Edge Network Assistance. 2018 IEEE International Conference on Communications (ICC). :1–6.

With the growth of smartphone sales and app usage, fingerprinting and identification of smartphone apps have become a considerable threat to user security and privacy. Traffic analysis is one of the most common methods for identifying apps. Traditional countermeasures towards traffic analysis includes traffic morphing and multipath routing. The basic idea of multipath routing is to increase the difficulty for adversary to eavesdrop all traffic by splitting traffic into several subflows and transmitting them through different routes. Previous works in multipath routing mainly focus on Wireless Sensor Networks (WSNs) or Mobile Ad Hoc Networks (MANETs). In this paper, we propose a multipath routing scheme for smartphones with edge network assistance to mitigate traffic analysis attack. We consider an adversary with limited capability, that is, he can only intercept the traffic of one node following certain attack probability, and try to minimize the traffic an adversary can intercept. We formulate our design as a flow routing optimization problem. Then a heuristic algorithm is proposed to solve the problem. Finally, we present the simulation results for our scheme and justify that our scheme can effectively protect smartphones from traffic analysis attack.

Majumder, S., Bhattacharyya, D..  2018.  Mitigating wormhole attack in MANET using absolute deviation statistical approach. 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC). :317–320.

MANET is vulnerable to so many attacks like Black hole, Wormhole, Jellyfish, Dos etc. Attackers can easily launch Wormhole attack by faking a route from original within network. In this paper, we propose an algorithm on AD (Absolute Deviation) of statistical approach to avoid and prevent Wormhole attack. Absolute deviation covariance and correlation take less time to detect Wormhole attack than classical one. Any extra necessary conditions, like GPS are not needed in proposed algorithms. From origin to destination, a fake tunnel is created by wormhole attackers, which is a link with good amount of frequency level. A false idea is created by this, that the source and destination of the path are very nearby each other and will take less time. But the original path takes more time. So it is necessary to calculate the time taken to avoid and prevent Wormhole attack. Better performance by absolute deviation technique than AODV is proved by simulation, done by MATLAB simulator for wormhole attack. Then the packet drop pattern is also measured for Wormholes using Absolute Deviation Correlation Coefficient.

2019-01-31
Zhang, Caixia, Liu, Xiaoxiao, Xu, Qingyang.  2018.  Mixed Gaussian Model Based Video Foreground Object Detection. Proceedings of the 2Nd International Conference on Computer Science and Application Engineering. :112:1–112:5.

Video1 surveillance has been applied to various industries and business, but the video surveillance is mainly to provide video capture and display services at current, and does not care about video content. In some applications, users want to be able to monitor the video content and implement automatic prompting and alarming functions. Therefore, this paper uses the hybrid Gaussian model (GMM) to achieve the separation of the foreground and the background of the video and the experiments validate the effectiveness of the algorithm.

2019-08-26
Zhang, Y., Ya\u gan, O..  2018.  Modeling and Analysis of Cascading Failures in Interdependent Cyber-Physical Systems. 2018 IEEE Conference on Decision and Control (CDC). :4731-4738.

Integrated cyber-physical systems (CPSs), such as the smart grid, are becoming the underpinning technology for major industries. A major concern regarding such systems are the seemingly unexpected large scale failures, which are often attributed to a small initial shock getting escalated due to intricate dependencies within and across the individual counterparts of the system. In this paper, we develop a novel interdependent system model to capture this phenomenon, also known as cascading failures. Our framework consists of two networks that have inherently different characteristics governing their intra-dependency: i) a cyber-network where a node is deemed to be functional as long as it belongs to the largest connected (i.e., giant) component; and ii) a physical network where nodes are given an initial flow and a capacity, and failure of a node results with redistribution of its flow to the remaining nodes, upon which further failures might take place due to overloading. Furthermore, it is assumed that these two networks are inter-dependent. For simplicity, we consider a one-to-one interdependency model where every node in the cyber-network is dependent upon and supports a single node in the physical network, and vice versa. We provide a thorough analysis of the dynamics of cascading failures in this interdependent system initiated with a random attack. The system robustness is quantified as the surviving fraction of nodes at the end of cascading failures, and is derived in terms of all network parameters involved. Analytic results are supported through an extensive numerical study. Among other things, these results demonstrate the ability of our model to capture the unexpected nature of large-scale failures, and provide insights on improving system robustness.

2020-04-24
Zhang, Lichen.  2018.  Modeling Cloud Based Cyber Physical Systems Based on AADL. 2018 24th International Conference on Automation and Computing (ICAC). :1—6.

Cloud-based cyber-physical systems, like vehicle and intelligent transportation systems, are now attracting much more attentions. These systems usually include large-scale distributed sensor networks covering various components and producing enormous measurement data. Lots of modeling languages are put to use for describing cyber-physical systems or its aspects, bringing contribution to the development of cyber-physical systems. But most of the modeling techniques only focuse on software aspect so that they could not exactly express the whole cloud-based cyber-physical systems, which require appropriate views and tools in its design; but those tools are hard to be used under systemic or object-oriented methods. For example, the widest used modeling language, UML, could not fulfil the above design's requirements by using the foremer's standard form. This paper presents a method designing the cloud-based cyber-physical systems with AADL, by which we can analyse, model and apply those requirements on cloud platforms ensuring QoS in a relatively highly extensible way at the mean time.