Biblio
With the development of smart grid, information and energy integrate deeply. For remote monitoring and cluster management, SCADA system of wind farm should be connected to Internet. However, communication security and operation risk put forward a challenge to data network of the wind farm. To address this problem, an active security defense strategy combined whitelist and security situation assessment is proposed. Firstly, the whitelist is designed by analyzing the legitimate packet of Modbus on communication of SCADA servers and PLCs. Then Knowledge Automation is applied to establish the Decision Requirements Diagram (DRD) for wind farm security. The D-S evidence theory is adopted to assess operation situation of wind farm and it together with whitelist offer the security decision for wind turbine. This strategy helps to eliminate the wind farm owners' security concerns of data networking, and improves the integrity of the cyber security defense for wind farm.
In this paper, we propose a novel adaptive control architecture for addressing security and safety in cyber-physical systems subject to exogenous disturbances. Specifically, we develop an adaptive controller for time-invariant, state-dependent adversarial sensor and actuator attacks in the face of stochastic exogenous disturbances. We show that the proposed controller guarantees uniform ultimate boundedness of the closed-loop dynamical system in a mean-square sense. We further discuss the practicality of the proposed approach and provide a numerical example involving the lateral directional dynamics of an aircraft to illustrate the efficacy of the proposed adaptive control architecture.
In this paper, cyber physical system is analyzed from security perspective. A double closed-loop security control structure and algorithm with defense functions is proposed. From this structure, the features of several cyber attacks are considered respectively. By this structure, the models of information disclosure, denial-of-service (DoS) and Man-in-the-Middle Attack (MITM) are proposed. According to each kind attack, different models are obtained and analyzed, then reduce to the unified models. Based on this, system security conditions are obtained, and a defense scenario with detail algorithm is design to illustrate the implementation of this program.
Guidelines, directives, and policy statements are usually presented in ``linear'' text form - word after word, page after page. However necessary, this practice impedes full understanding, obscures feedback dynamics, hides mutual dependencies and cascading effects and the like, - even when augmented with tables and diagrams. The net result is often a checklist response as an end in itself. All this creates barriers to intended realization of guidelines and undermines potential effectiveness. We present a solution strategy using text as ``data'', transforming text into a structured model, and generate a network views of the text(s), that we then can use for vulnerability mapping, risk assessments and control point analysis. We apply this approach using two NIST reports on cybersecurity of smart grid, more than 600 pages of text. Here we provide a synopsis of approach, methods, and tools. (Elsewhere we consider (a) system-wide level, (b) aviation e-landscape, (c) electric vehicles, and (d) SCADA for smart grid).
Cyber-physical systems are found in industrial and production systems, as well as critical infrastructures. Due to the increasing integration of IP-based technology and standard computing devices, the threat of cyber-attacks on cyber-physical systems has vastly increased. Furthermore, traditional intrusion defense strategies for IT systems are often not applicable in operational environments. In this paper we present an anomaly-based approach for detection and classification of attacks in cyber-physical systems. To test our approach, we set up a test environment with sensors, actuators and controllers widely used in industry, thus, providing system data as close as possible to reality. First, anomaly detection is used to define a model of normal system behavior by calculating outlier scores from normal system operations. This valid behavior model is then compared with new data in order to detect anomalies. Further, we trained an attack model, based on supervised attacks against the test setup, using the naive Bayes classifier. If an anomaly is detected, the classification process tries to classify the anomaly by applying the attack model and calculating prediction confidences for trained classes. To evaluate the statistical performance of our approach, we tested the model by applying an unlabeled dataset, which contains valid and anomalous data. The results show that this approach was able to detect and classify such attacks with satisfactory accuracy.
Due to the growing performance requirements, embedded systems are increasingly more complex. Meanwhile, they are also expected to be reliable. Guaranteeing reliability on complex systems is very challenging. Consequently, there is a substantial need for designs that enable the use of unverified components such as real-time operating system (RTOS) without requiring their correctness to guarantee safety. In this work, we propose a novel approach to design a controller that enables the system to restart and remain safe during and after the restart. Complementing this controller with a switching logic allows the system to use complex, unverified controller to drive the system as long as it does not jeopardize safety. Such a design also tolerates faults that occur in the underlying software layers such as RTOS and middleware and recovers from them through system-level restarts that reinitialize the software (middleware, RTOS, and applications) from a read-only storage. Our approach is implementable using one commercial off-the-shelf (COTS) processing unit. To demonstrate the efficacy of our solution, we fully implement a controller for a 3 degree of freedom (3DOF) helicopter. We test the system by injecting various types of faults into the applications and RTOS and verify that the system remains safe.
This paper1 introduces the notion of attribute-based concurrent signatures. This primitive can be considered as an interesting extension of concurrent signatures in the attribute-based setting. It allows two parties fairly exchange their signatures only if each of them has convinced the opposite party possesses certain attributes satisfying a given signing policy. Due to this new feature, this primitive can find useful applications in online contract signing, electronic transactions and so on. We formalize this notion and present a construction which is secure in the random oracle model under the Strong Diffie-Hellman assumption and the eXternal Diffie-Hellman assumption.
Power grid operations rely on the trustworthy operation of critical control center functionalities, including the so-called Economic Dispatch (ED) problem. The ED problem is a large-scale optimization problem that is periodically solved by the system operator to ensure the balance of supply and load while maintaining reliability constraints. In this paper, we propose a semantics-based attack generation and implementation approach to study the security of the ED problem.1 Firstly, we generate optimal attack vectors to transmission line ratings to induce maximum congestion in the critical lines, resulting in the violation of capacity limits. We formulate a bilevel optimization problem in which the attacker chooses manipulations of line capacity ratings to maximinimize the percentage line capacity violations under linear power flows. We reformulate the bilevel problem as a mixed integer linear program that can be solved efficiently. Secondly, we describe how the optimal attack vectors can be implemented in commercial energy management systems (EMSs). The attack explores the dynamic memory space of the EMS, and replaces the true line capacity ratings stored in data regions with the optimal attack vectors. In contrast to the well-known false data injection attacks to control systems that require compromising distributed sensors, our approach directly implements attacks to the control center server. Our experimental results on benchmark power systems and five widely utilized EMSs show the practical feasibility of our attack generation and implementation approach.
Power grid operations rely on the trustworthy operation of critical control center functionalities, including the so-called Economic Dispatch (ED) problem. The ED problem is a large-scale optimization problem that is periodically solved by the system operator to ensure the balance of supply and load while maintaining reliability constraints. In this paper, we propose a semantics-based attack generation and implementation approach to study the security of the ED problem.1 Firstly, we generate optimal attack vectors to transmission line ratings to induce maximum congestion in the critical lines, resulting in the violation of capacity limits. We formulate a bilevel optimization problem in which the attacker chooses manipulations of line capacity ratings to maximinimize the percentage line capacity violations under linear power flows. We reformulate the bilevel problem as a mixed integer linear program that can be solved efficiently. Secondly, we describe how the optimal attack vectors can be implemented in commercial energy management systems (EMSs). The attack explores the dynamic memory space of the EMS, and replaces the true line capacity ratings stored in data regions with the optimal attack vectors. In contrast to the well-known false data injection attacks to control systems that require compromising distributed sensors, our approach directly implements attacks to the control center server. Our experimental results on benchmark power systems and five widely utilized EMSs show the practical feasibility of our attack generation and implementation approach.
Wireless communications in Cyber-Physical Systems (CPS) are vulnerable to many adversarial attacks such as eavesdropping. To secure the communications, secret session keys need to be established between wireless devices. In existing symmetric key establishment protocols, it is assumed that devices are pre-loaded with secrets. In the CPS, however, wireless devices are produced by different companies. It is not practical to assume that the devices are pre-loaded with certain secrets when they leave companies. As a consequence, existing symmetric key establishment protocols cannot be directly implemented in the CPS. Motivated by these observations, this paper presents a cross-layer key establishment model for heterogeneous wireless devices in the CPS. Specifically, by implementing our model, wireless devices extract master keys (shared with the system authority) at the physical layer using ambient wireless signals. Then, the system authority distributes secrets for devices (according to an existing symmetric key establishment protocol) by making use of the extracted master keys. Completing these operations, wireless devices can establish secret session keys at higher layers by calling the employed key establishment protocol. Additionally, we prove the security of the proposed model. We analyse the performance of the new model by implementing it and converting existing symmetric key establishment protocols into cross-layer key establishment protocols.
This brief paper reports on an early stage ongoing PhD project in the field of cyber-physical security in health care critical infrastructures. The research overall aims to develop a methodology that will increase the ability of secure recovery of health critical infrastructures. This ambitious or reckless attempt, as it is currently at an early stage, in this paper, tries to answer why cyber-physical security for health care infrastructures is important and of scientific interest. An initial PhD project methodology and expected outcomes are also discussed. The report concludes with challenges that emerge and possible future directions.
In a software system it is possible to quantify the amount of information that is leaked or corrupted by analysing the flows of information present in the source code. In a cyber-physical system, information flows are not only present at the digital level but also at a physical level, and they are also present to and fro the two levels. In this work, we provide a methodology to formally analyse a composite, cyber-physical system model (combining physics and control) using an information flow-theoretic approach. We use this approach to quantify the level of vulnerability of a system with respect to attackers with different capabilities. We illustrate our approach by means of a water distribution case study.
Compressed sensing can represent the sparse signal with a small number of measurements compared to Nyquist-rate samples. Considering the high-complexity of reconstruction algorithms in CS, recently compressive detection is proposed, which performs detection directly in compressive domain without reconstruction. Different from existing work that generally considers the measurements corrupted by dense noises, this paper studies the compressive detection problem when the measurements are corrupted by both dense noises and sparse errors. The sparse errors exist in many practical systems, such as the ones affected by impulse noise or narrowband interference. We derive the theoretical performance of compressive detection when the sparse error is either deterministic or random. The theoretical results are further verified by simulations.
With the rapid and radical evolution of information and communication technology, energy consumption for wireless communication is growing at a staggering rate, especially for wireless multimedia communication. Recently, reducing energy consumption in wireless multimedia communication has attracted increasing attention. In this paper, we propose an energy-efficient wireless image transmission scheme based on adaptive block compressive sensing (ABCS) and SoftCast, which is called ABCS-SoftCast. In ABCS-SoftCast, the compression distortion and transmission distortion are considered in a joint manner, and the energy-distortion model is formulated for each image block. Then, the sampling rate (SR) and power allocation factors of each image block are optimized simultaneously. Comparing with conventional SoftCast scheme, experimental results demonstrate that the energy consumption can be greatly reduced even when the receiving image qualities are approximately the same.
A lot of research in security of cyber physical systems focus on threat models where an attacker can spoof sensor readings by compromising the communication channel. A little focus is given to attacks on physical components. In this paper a method to detect potential attacks on physical components in a Cyber Physical System (CPS) is proposed. Physical attacks are detected through a comparison of noise pattern from sensor measurements to a reference noise pattern. If an adversary has physically modified or replaced a sensor, the proposed method issues an alert indicating that a sensor is probably compromised or is defective. A reference noise pattern is established from the sensor data using a deterministic model. This pattern is referred to as a fingerprint of the corresponding sensor. The fingerprint so derived is used as a reference to identify measured data during the operation of a CPS. Extensive experimentation with ultrasonic level sensors in a realistic water treatment testbed point to the effectiveness of the proposed fingerprinting method in detecting physical attacks.
We show high confinement thermally tunable, low loss (0.27 ± 0.04 dB/cm) Si3N4waveguides that are 42 cm long. We show that this platform can enable the miniaturization of traditionally bulky active OCT components.
The high mobility of Army tactical networks, combined with their close proximity to hostile actors, elevates the risks associated with short-range network attacks. The connectivity model for such short range connections under active operations is extremely fluid, and highly dependent upon the physical space within which the element is operating, as well as the patterns of movement within that space. To handle these dependencies, we introduce the notion of "key cyber-physical terrain": locations within an area of operations that allow for effective control over the spread of proximity-dependent malware in a mobile tactical network, even as the elements of that network are in constant motion with an unpredictable pattern of node-to-node connectivity. We provide an analysis of movement models and approximation strategies for finding such critical nodes, and demonstrate via simulation that we can identify such key cyber-physical terrain quickly and effectively.
A semi-analytical model for internal optical losses at high power in a 1.5 μm laser diode with strong n-doping in the n-side of the optical confinement layer is created. The model includes intervalence band absorption by holes supplied by both current flow and two-photon absorption. The resulting losses are shown to be substantially lower than those in a similar, but weakly doped structure. Thus a significant improvement in the output power and efficiency by strong n-doping is predicted.