Biblio
The term "Cyber Physical System" (CPS) has been used in the recent years to describe a system type, which makes use of powerful communication networks to functionally combine systems that were previously thought of as independent. The common theme of CPSs is that through communication, CPSs can make decisions together and achieve common goals. Yet, in contrast to traditional system types such as embedded systems, the functional dependence between CPSs can change dynamically at runtime. Hence, their functional dependence may cause unforeseen runtime behavior, e.g., when a CPS becomes unavailable, but others depend on its correct operation. During development of any individual CPS, this runtime behavior must hence be predicted, and the system must be developed with the appropriate level of robustness. Since at present, research is mainly concerned with the impact of functional dependence in CPS on development, the impact on runtime behavior is mere conjecture. In this paper, we present AirborneCPS, a simulation tool for functionally dependent CPSs which simulates runtime behavior and aids in the identification of undesired functional interaction.
Cyber-Physical Systems (CPSs) are engineered systems seamlessly integrating computational algorithms and physical components. CPS advances offer numerous benefits to domains such as health, transportation, smart homes and manufacturing. Despite these advances, the overall cybersecurity posture of CPS devices remains unclear. In this paper, we provide knowledge on how to improve CPS resiliency by evaluating and comparing the accuracy, and scalability of two popular vulnerability assessment tools, Nessus and OpenVAS. Accuracy and suitability are evaluated with a diverse sample of pre-defined vulnerabilities in Industrial Control Systems (ICS), smart cars, smart home devices, and a smart water system. Scalability is evaluated using a large-scale vulnerability assessment of 1,000 Internet accessible CPS devices found on Shodan, the search engine for the Internet of Things (IoT). Assessment results indicate several CPS devices from major vendors suffer from critical vulnerabilities such as unsupported operating systems, OpenSSH vulnerabilities allowing unauthorized information disclosure, and PHP vulnerabilities susceptible to denial of service attacks.
The growing number of devices we interact with require a convenient yet secure solution for user identification, authorization and authentication. Current approaches are cumbersome, susceptible to eavesdropping and relay attacks, or energy inefficient. In this paper, we propose a body-guided communication mechanism to secure every touch when users interact with a variety of devices and objects. The method is implemented in a hardware token worn on user's body, for example in the form of a wristband, which interacts with a receiver embedded inside the touched device through a body-guided channel established when the user touches the device. Experiments show low-power (uJ/bit) operation while achieving superior resilience to attacks, with the received signal at the intended receiver through the body channel being at least 20dB higher than that of an adversary in cm range.
Monitoring systems are essential to understand and control the behaviour of systems and networks. Cyber-physical systems (CPS) are particularly delicate under that perspective since they involve real-time constraints and physical phenomena that are not usually considered in common IT solutions. Therefore, there is a need for publicly available monitoring tools able to contemplate these aspects. In this poster/demo, we present our initiative, called CPS-MT, towards a versatile, real-time CPS monitoring tool, with a particular focus on security research. We first present its architecture and main components, followed by a MiniCPS-based case study. We also describe a performance analysis and preliminary results. During the demo, we will discuss CPS-MT's capabilities and limitations for security applications.
In recent years, there has been a significant increase in wind power penetration into the power system. As a result, the behavior of the power system has become more dependent on wind power behavior. Supervisory control and data acquisition (SCADA) systems responsible for monitoring and controlling wind farms often have vulnerabilities that make them susceptible to cyberattacks. These vulnerabilities allow attackers to exploit and intrude in the wind farm SCADA system. In this paper, a cyber-physical system (CPS) model for the information and communication technology (ICT) model of the wind farm SCADA system integrated with SCADA of the power system is proposed. Cybersecurity of this wind farm SCADA system is discussed. Proposed cyberattack scenarios on the system are modeled and the impact of these cyberattacks on the behavior of the power systems on the IEEE 9-bus modified system is investigated. Finally, an anomaly attack detection algorithm is proposed to stop the attack of tripping of all wind farms. Case studies validate the performance of the proposed CPS model of the test system and the attack detection algorithm.
Transitioning to more open architectures has been making Cyber-Physical Systems (CPS) vulnerable to malicious attacks that are beyond the conventional cyber attacks. This paper studies attack-resilience enhancement for a system under emerging attacks in the environment of the controller. An effective way to address this problem is to make system state estimation accurate enough for control regardless of the compromised components. This work follows this way and develops a procedure named CPS checkpointing and recovery, which leverages historical data to recover failed system states. Specially, we first propose a new concept of physical-state recovery. The essential operation is defined as rolling the system forward starting from a consistent historical system state. Second, we design a checkpointing protocol that defines how to record system states for the recovery. The protocol introduces a sliding window that accommodates attack-detection delay to improve the correctness of stored states. Third, we present a use case of CPS checkpointing and recovery that deals with compromised sensor measurements. At last, we evaluate our design through conducting simulator-based experiments and illustrating the use of our design with an unmanned vehicle case study.
Engineering complex distributed systems is challenging. Recent solutions for the development of cyber-physical systems (CPS) in industry tend to rely on architectural designs based on service orientation, where the constituent components are deployed according to their service behavior and are to be understood as loosely coupled and mostly independent. In this paper, we develop a workflow that combines contract-based and CPS model-based specifications with service orientation, and analyze the resulting model using fault injection to assess the dependability of the systems. Compositionality principles based on the contract specification help us to make the analysis practical. The presented techniques are evaluated on two case studies.
A new kind of Square Lattice Photonic Crystal Fiber (SLPCF) is proposed, the first ring is formed by elliptical holes filled with ethanol. To regulate the dispersion and the confinement loss we put a circular air-holes with small diameters into the third ring of the cladding area. The diameter of the core is arranged as d2=2*A-d, where A is the pitch and d diameter of the air-holes. After simulations, we got a dispersion low as 0.0494 (ps/Km. nm) and a confinement loss also low as 2.6×10-7(dB/m) at a wavelength of 1.55 $μ$m. At 0.8 $μ$m we obtained a nonlinearity high as 60.95 (1/km. w) and a strong guiding light. Also, we compare the filled ethanol elliptical holes with the air filled elliptical holes of our proposed square lattice photonic crystal fiber. We use as a simulation method in this manuscript the two-dimensional FDTD method. The utilization of the proposed fiber is in the telecommunication transmission because of its low dispersion and low loss at the c-band and in the nonlinear applications.
Resilient control systems should efficiently restore control into physical systems not only after the sabotage of themselves, but also after breaking physical systems. To enhance resilience of control systems, given an originally minimal-input controlled linear-time invariant(LTI) physical system, we address the problem of efficient control recovery into it after removing a known system vertex by finding the minimum number of inputs. According to the minimum input theorem, given a digraph embedded into LTI model and involving a precomputed maximum matching, this problem is modeled into recovering controllability of it after removing a known network vertex. Then, we recover controllability of the residual network by efficiently finding a maximum matching rather than recomputation. As a result, except for precomputing a maximum matching and the following removed vertex, the worst-case execution time of control recovery into the residual LTI physical system is linear.
Observing semantic dependencies in large and heterogeneous networks is a critical task, since it is quite difficult to find the actual source of a malfunction in the case of an error. Dependencies might exist between many network nodes and among multiple hops in paths. If those dependency structures are unknown, debugging errors gets quite difficult. Since CPS and other large networks change at runtime and consists of custom software and hardware, as well as components off-the-shelf, it is necessary to be able to not only include own components in approaches to detect dependencies between nodes. In this paper we present an extension to the Information Flow Monitor approach. Our goal is that this approach should be able to handle unalterable blackbox nodes. This is quite challenging, since the IFM originally requires each network node to be compliant with the IFM protocol.
Millimeter Wave (mmWave) networks can deliver multi-Gbps wireless links that use extremely narrow directional beams. This provides us with a new way to exploit spatial reuse in order to scale network throughput. In this work, we present MilliNet, the first millimeter wave network that can exploit dense spatial reuse to allow many links to operate in parallel in a confined space and scale the wireless throughput with the number of clients. Results from a 60 GHz testbed show that MilliNet can deliver a total wireless network data rate of more than 38 Gbps for 10 clients which is 5.8× higher than current 802.11 mmWave standards.
In modern societies, critical services such as transportation, power supply, water treatment and distribution are strongly dependent on Industrial Control Systems (ICS). As technology moves along, new features improve services provided by such ICS. On the other hand, this progress also introduces new risks of cyber attacks due to the multiple direct and indirect dependencies between cyber and physical components of such systems. Performing rigorous security tests and risk analysis in these critical systems is thus a challenging task, because of the non-trivial interactions between digital and physical assets and the domain-specific knowledge necessary to analyse a particular system. In this work, we propose a methodology to model and analyse a System Under Test (SUT) as a data flow graph that highlights interactions among internal entities throughout the SUT. This model is automatically extracted from production code available in Programmable Logic Controllers (PLCs). We also propose a reachability algorithm and an attack diagram that will emphasize the dependencies between cyber and physical domains, thus enabling a human analyst to gauge various attack vectors that arise from subtle dependencies in data and information propagation. We test our methodology in a functional water treatment testbed and demonstrate how an analyst could make use of our designed attack diagrams to reason on possible threats to various targets of the SUT.
Industry 4.0 is based on the CPS architecture since it is the next generation in the industry. The CPS architecture is a system based on Cloud Computing technology and Internet of Things where computer elements collaborate for the control of physical entities. The security framework in this architecture is necessary for the protection of two parts (physical and information) so basically, security in CPS is classified into two main parts: information security (data) and security of control. In this work, we propose two models to solve the two problems detected in the security framework. The first proposal SCCAF (Smart Cloud Computing Adoption Framework) treats the nature of information that serves for the detection and the blocking of the threats our basic architecture CPS. The second model is a modeled detector related to the physical nature for detecting node information.
Owing1 to an immense growth of internet-connected and learning-enabled cyber-physical systems (CPSs) [1], several new types of attack vectors have emerged. Analyzing security and resilience of these complex CPSs is difficult as it requires evaluating many subsystems and factors in an integrated manner. Integrated simulation of physical systems and communication network can provide an underlying framework for creating a reusable and configurable testbed for such analyses. Using a model-based integration approach and the IEEE High-Level Architecture (HLA) [2] based distributed simulation software; we have created a testbed for integrated evaluation of large-scale CPS systems. Our tested supports web-based collaborative metamodeling and modeling of CPS system and experiments and a cloud computing environment for executing integrated networked co-simulations. A modular and extensible cyber-attack library enables validating the CPS under a variety of configurable cyber-attacks, such as DDoS and integrity attacks. Hardware-in-the-loop simulation is also supported along with several hardware attacks. Further, a scenario modeling language allows modeling of alternative paths (Courses of Actions) that enables validating CPS under different what-if scenarios as well as conducting cyber-gaming experiments. These capabilities make our testbed well suited for analyzing security and resilience of CPS. In addition, the web-based modeling and cloud-hosted execution infrastructure enables one to exercise the entire testbed using simply a web-browser, with integrated live experimental results display.
Internet of Things (IoT) offers new opportunities for business, technology and science but it also raises new challenges in terms of security and privacy, mainly because of the inherent characteristics of this environment: IoT devices come from a variety of manufacturers and operators and these devices suffer from constrained resources in terms of computation, communication and storage. In this paper, we address the problem of trust establishment for IoT and propose a security solution that consists of a secure bootstrap mechanism for device identification as well as a message attestation mechanism for aggregate response validation. To achieve both security requirements, we approach the problem in a confined environment, named SubNets of Things (SNoT), where various devices depend on it. In this context, devices are uniquely and securely identified thanks to their environment and their role within it. Additionally, the underlying message authentication technique features signature aggregation and hence, generates one compact response on behalf of all devices in the subnet.
Integrated cyber-physical systems (CPSs), such as the smart grid, are becoming the underpinning technology for major industries. A major concern regarding such systems are the seemingly unexpected large scale failures, which are often attributed to a small initial shock getting escalated due to intricate dependencies within and across the individual counterparts of the system. In this paper, we develop a novel interdependent system model to capture this phenomenon, also known as cascading failures. Our framework consists of two networks that have inherently different characteristics governing their intra-dependency: i) a cyber-network where a node is deemed to be functional as long as it belongs to the largest connected (i.e., giant) component; and ii) a physical network where nodes are given an initial flow and a capacity, and failure of a node results with redistribution of its flow to the remaining nodes, upon which further failures might take place due to overloading. Furthermore, it is assumed that these two networks are inter-dependent. For simplicity, we consider a one-to-one interdependency model where every node in the cyber-network is dependent upon and supports a single node in the physical network, and vice versa. We provide a thorough analysis of the dynamics of cascading failures in this interdependent system initiated with a random attack. The system robustness is quantified as the surviving fraction of nodes at the end of cascading failures, and is derived in terms of all network parameters involved. Analytic results are supported through an extensive numerical study. Among other things, these results demonstrate the ability of our model to capture the unexpected nature of large-scale failures, and provide insights on improving system robustness.
Cloud-based cyber-physical systems, like vehicle and intelligent transportation systems, are now attracting much more attentions. These systems usually include large-scale distributed sensor networks covering various components and producing enormous measurement data. Lots of modeling languages are put to use for describing cyber-physical systems or its aspects, bringing contribution to the development of cyber-physical systems. But most of the modeling techniques only focuse on software aspect so that they could not exactly express the whole cloud-based cyber-physical systems, which require appropriate views and tools in its design; but those tools are hard to be used under systemic or object-oriented methods. For example, the widest used modeling language, UML, could not fulfil the above design's requirements by using the foremer's standard form. This paper presents a method designing the cloud-based cyber-physical systems with AADL, by which we can analyse, model and apply those requirements on cloud platforms ensuring QoS in a relatively highly extensible way at the mean time.
Cyber-Physical Systems (CPS) and Internet of Things (IoT) are emerging technologies, which makes the remote sensing and control across heterogeneous network a reality, and has good prospects in industrial applications. Due to the resource constrained feature of CPS devices, the design of security and efficiency balanced authentication scheme for CPS/IoT devices becomes a big challenge in CPS/IoT applications. This paper presents a two-factor authentication with key agreement scheme for CPS/IoT applications. The proposed mechanism integrates IMSI identifier and identity-based remote mutual authentication scheme on BAN logic designs. It supports flawless two-factor and mutual authentication of participants and agreement of session keys for user, device and gateway server. The proposed mechanism also provide user anonymity, it can be adopt in critical applications. Besides, it does not require modifying the software of clients; thus, it is highly flexibly. We believe the proposed mechanism is usable for CPS/IoT applications.
Cyber-Physical Systems (CPS), such as Water Distribution Networks (WDNs), deploy digital devices to monitor and control the behavior of physical processes. These digital devices, however, are susceptible to cyber and physical attacks, that may alter their functionality, and therefore the integrity of their measurements/actions. In practice, industrial control systems utilize simple control laws, which rely on various sensor measurements and algorithms which are expected to operate normally. To reduce the impact of a potential failure, operators may deploy redundant components; this however may not be useful, e.g., when a cyber attack at a PLC component occurs. In this work, we address the problem of reducing vulnerability to cyber-physical attacks in water distribution networks. This is achieved by augmenting the graph which describes the information flow from sensors to actuators, by adding new connections and algorithms, to increase the number of redundant cyber components. These, in turn, increase the \textitcyber-physical security level, which is defined in the present paper as the number of malicious attacks a CPS may sustain before becoming unable to satisfy the control requirements. A proof-of-concept of the approach is demonstrated over a simple WDN, with intuition on how this can be used to increase the cyber-physical security level of the system.
When vertically aligned carbon nanotube arrays (CNT forests) are heated by optical, electrical, or any other means, heat confinement in the lateral directions (i.e. perpendicular to the CNTs' axes), which stems from the anisotropic structure of the forest, is expected to play an important role. It has been found that, in spite of being primarily conductive along the CNTs' axes, focusing a laser beam on the sidewall of a CNT forest can lead to a highly localized hot region-an effect known as ``Heat Trap''-and efficient thermionic emission. This unusual heat confinement phenomenon has applications where the spread of heat has to be minimized, but electrical conduction is required, notably in energy conversion (e.g. vacuum thermionics and thermoelectrics). However, despite its strong scientific and practical importance, the existence and role of the lateral heat confinement in the Heat Trap effect have so far been elusive. In this work, for the first time, by using a rotating elliptical laser beam, we directly observe the existence of this lateral heat confinement and its corresponding effects on the unusual temperature rise during the Heat Trap effect.
Security is one of the most important properties of electric power system (EPS). We consider the state estimation (SE) tool as a barrier to the corruption of data on current operating conditions of the EPS. An algorithm for a two-level SE on the basis of SCADA and WAMS measurements is effective in terms of detection of malicious attacks on energy system. The article suggests a methodology to identify cyberattacks on SCADA and WAMS.