Biblio
Traditional security measures for large-scale critical infrastructure systems have focused on keeping adversaries out of the system. As the Internet of Things (IoT) extends into millions of homes, with tens or hundreds of devices each, the threat landscape is complicated. IoT devices have unknown access capabilities with unknown reach into other systems. This paper presents ongoing work on how techniques in sensor verification and cyber-physical modeling and analysis on bulk power systems can be applied to identify malevolent IoT devices and secure smart and connected communities against the most impactful threats.
In the security area, there has been an increasing tendency to apply deep learning, which is perceived as a black box method because of the lack of understanding of its internal functioning. Can we trust deep learning models when they achieve high test accuracy? Using a visual explanation method, we find that deep learning models used in security tasks can easily focus on semantically non-discriminative parts of input data even though they produce the right answers. Furthermore, when a model is re-trained without any change in the learning procedure (i.e., no change in training/validation data, initialization/optimization methods and hyperparameters), it can focus on significantly different parts of many samples while producing the same answers. For trustworthy deep learning in security, therefore, we argue that it is necessary to verify the classification criteria of deep learning models before deploying them, even though they successfully achieve high test accuracy.
Digital twins open up new possibilities in terms of monitoring, simulating, optimizing and predicting the state of cyber-physical systems (CPSs). Furthermore, we argue that a fully functional, virtual replica of a CPS can also play an important role in securing the system. In this work, we present a framework that allows users to create and execute digital twins, closely matching their physical counterparts. We focus on a novel approach to automatically generate the virtual environment from specification, taking advantage of engineering data exchange formats. From a security perspective, an identical (in terms of the system's specification), simulated environment can be freely explored and tested by security professionals, without risking negative impacts on live systems. Going a step further, security modules on top of the framework support security analysts in monitoring the current state of CPSs. We demonstrate the viability of the framework in a proof of concept, including the automated generation of digital twins and the monitoring of security and safety rules.
A tracking flow is a flow between an end user and a Web tracking service. We develop an extensive measurement methodology for quantifying at scale the amount of tracking flows that cross data protection borders, be it national or international, such as the EU28 border within which the General Data Protection Regulation (GDPR) applies. Our methodology uses a browser extension to fully render advertising and tracking code, various lists and heuristics to extract well known trackers, passive DNS replication to get all the IP ranges of trackers, and state-of-the art geolocation. We employ our methodology on a dataset from 350 real users of the browser extension over a period of more than four months, and then generalize our results by analyzing billions of web tracking flows from more than 60 million broadband and mobile users from 4 large European ISPs. We show that the majority of tracking flows cross national borders in Europe but, unlike popular belief, are pretty well confined within the larger GDPR jurisdiction. Simple DNS redirection and PoP mirroring can increase national confinement while sealing almost all tracking flows within Europe. Last, we show that cross boarder tracking is prevalent even in sensitive and hence protected data categories and groups including health, sexual orientation, minors, and others.
Although virtual reality hardware is now widely available, the uptake of real walking is hindered by the fact that it requires often impractically large amounts of physical space. To address this, we present VirtualSpace, a novel system that allows overloading multiple users immersed in different VR experiences into the same physical space. VirtualSpace accomplishes this by containing each user in a subset of the physical space at all times, which we call tiles; app-invoked maneuvers then shuffle tiles and users across the entire physical space. This allows apps to move their users to where their narrative requires them to be while hiding from users that they are confined to a tile. We show how this enables VirtualSpace to pack four users into 16m2. In our study we found that VirtualSpace allowed participants to use more space and to feel less confined than in a control condition with static, pre-allocated space.
NIST, in collaboration with Vanderbilt University, has assembled an open-source tool set for designing and implementing federated, collaborative and interactive experiments with cyber-physical systems (CPS). These capabilities are used in our research on CPS at scale for Smart Grid, Smart Transportation, IoT and Smart Cities. This tool set, "Universal CPS Environment for Federation (UCEF)," includes a virtual machine (VM) to house the development environment, a graphical experiment designer, a model repository, and an initial set of integrated tools including the ability to compose Java, C++, MATLABTM, OMNeT++, GridLAB-D, and LabVIEWTM based federates into consolidated experiments. The experiments themselves are orchestrated using a ‘federation manager federate,’ and progressed using courses of action (COA) experiment descriptions. UCEF utilizes a method of uniformly wrapping federates into a federation. The UCEF VM is an integrated toolset for creating and running these experiments and uses High Level Architecture (HLA) Evolved to facilitate the underlying messaging and experiment orchestration. Our paper introduces the requirements and implementation of the UCEF technology and indicates how we intend to use it in CPS Measurement Science.
Cyber physical systems are the key innovation driver for many domains such as automotive, avionics, industrial process control, and factory automation. However, their interconnection potentially provides adversaries easy access to sensitive data, code, and configurations. If attackers gain control, material damage or even harm to people must be expected. To counteract data theft, system manipulation and cyber-attacks, security mechanisms must be embedded in the cyber physical system. Adding hardware security in the form of the standardized Trusted Platform Module (TPM) is a promising approach. At the same time, traditional dependability features such as safety, availability, and reliability have to be maintained. To determine the right balance between security and dependability it is essential to understand their interferences. This paper supports developers in identifying the implications of using TPMs on the dependability of their system.We highlight potential consequences of adding TPMs to cyber-physical systems by considering the resulting safety, reliability, and availability. Furthermore, we discuss the potential of enhancing the dependability of TPM services by applying traditional redundancy techniques.
Cyber-physical systems (CPS) research leverages the expertise of researchers from multiple domains to engineer complex systems of interacting physical and computational components. An approach called co-simulation is often used in CPS conceptual design to integrate the specialized tools and simulators from each of these domains into a joint simulation for the evaluation of design decisions. Many co-simulation platforms are being developed to expedite CPS conceptualization and realization, but most use intrusive modeling and communication libraries that require researchers to either abandon their existing models or spend considerable effort to integrate them into the platform. A significant number of these co-simulation platforms use the High Level Architecture (HLA) standard that provides a rich set of services to facilitate distributed simulation. This paper introduces a simple gateway that can be readily implemented without co-simulation expertise to adapt existing models and research infrastructure for use in HLA. An open-source implementation of the gateway has been developed for the National Institute of Standards and Technology (NIST) co-simulation platform called the Universal CPS Environment for Federation (UCEF).
Cyber-Physical Systems (CPS) have been increasingly subject to cyber-attacks including code injection attacks. Zero day attacks further exasperate the threat landscape by requiring a shift to defense in depth approaches. With the tightly coupled nature of cyber components with the physical domain, these attacks have the potential to cause significant damage if safety-critical applications such as automobiles are compromised. Moving target defense techniques such as instruction set randomization (ISR) have been commonly proposed to address these types of attacks. However, under current implementations an attack can result in system crashing which is unacceptable in CPS. As such, CPS necessitate proper control reconfiguration mechanisms to prevent a loss of availability in system operation. This paper addresses the problem of maintaining system and security properties of a CPS under attack by integrating ISR, detection, and recovery capabilities that ensure safe, reliable, and predictable system operation. Specifically, we consider the problem of detecting code injection attacks and reconfiguring the controller in real-time. The developed framework is demonstrated with an autonomous vehicle case study.
This project develops techniques to protect against sensor attacks on cyber-physical systems. Specifically, a resilient version of the Kalman filtering technique accompanied with a watermarking approach is proposed to detect cyber-attacks and estimate the correct state of the system. The defense techniques are used in conjunction and validated on two case studies: i) an unmanned ground vehicle (UGV) in which an attacker alters the reference angle and ii) a Cube Satellite (CubeSat) in which an attacker modifies the orientation of the satellite degrading its performance. Based on this work, we show that the proposed techniques in conjunction achieve better resiliency and defense capability than either technique alone against spoofing and replay attacks.
A Cyber Physical Sensor System (CPSS) consists of a computing platform equipped with wireless access points, sensors, and actuators. In a Cyber Physical System, CPSS constantly collects data from a physical object that is under process and performs local real-time control activities based on the process algorithm. The collected data is then transmitted through the network layer to the enterprise command and control center or to the cloud computing services for further processing and analysis. This paper investigates the CPSS' most common cyber security threats and vulnerabilities and provides countermeasures. Furthermore, the paper addresses how the CPSS are attacked, what are the leading consequences of the attacks, and the possible remedies to prevent them. Detailed case studies are presented to help the readers understand the CPSS threats, vulnerabilities, and possible solutions.
One challenge for cybersecurity experts is deciding which type of attack would be successful against the system they wish to protect. Often, this challenge is addressed in an ad hoc fashion and is highly dependent upon the skill and knowledge base of the expert. In this study, we present a method for automatically ranking attack patterns in the Common Attack Pattern Enumeration and Classification (CAPEC) database for a given system. This ranking method is intended to produce suggested attacks to be evaluated by a cybersecurity expert and not a definitive ranking of the "best" attacks. The proposed method uses topic modeling to extract hidden topics from the textual description of each attack pattern and learn the parameters of a topic model. The posterior distribution of topics for the system is estimated using the model and any provided text. Attack patterns are ranked by measuring the distance between each attack topic distribution and the topic distribution of the system using KL divergence.
This paper sheds light on the collaborative efforts in restoring cyber and physical subsystems of a modern power distribution system after the occurrence of an extreme weather event. The extensive cyber-physical interdependencies in the operation of power distribution systems are first introduced for investigating the functionality loss of each subsystem when the dependent subsystem suffers disruptions. A resilience index is then proposed for measuring the effectiveness of restoration activities in terms of restoration rapidity. After modeling operators' decision making for economic dispatch as a second-order cone programming problem, this paper proposes a heuristic approach for prioritizing the activities for restoring both cyber and physical subsystems. In particular, the proposed heuristic approach takes into consideration of cyber-physical interdependencies for improving the operation performance. Case studies are also conducted to validate the collaborative restoration model in the 33-bus power distribution system.
A Robot Operating System (ROS) plays a significant role in organizing industrial robots for manufacturing. With an increasing number of the robots, the operators integrate a ROS with networked communication to share the data. This cyber-physical nature exposes the ROS to cyber attacks. To this end, this paper proposes a cross-layer approach to achieve secure and resilient control of a ROS. In the physical layer, due to the delay caused by the security mechanism, we design a time-delay controller for the ROS agent. In the cyber layer, we define cyber states and use Markov Decision Process to evaluate the tradeoffs between physical and security performance. Due to the uncertainty of the cyber state, we extend the MDP to a Partially Observed Markov Decision Process (POMDP). We propose a threshold solution based on our theoretical results. Finally, we present numerical examples to evaluate the performance of the secure and resilient mechanism.
Modern infrastructure is heavily reliant on systems with interconnected computational and physical resources, named Cyber-Physical Systems (CPSs). Hence, building resilient CPSs is a prime need and continuous monitoring of the CPS operational health is essential for improving resilience. This paper presents a framework for calculating and monitoring of health in CPSs using data driven techniques. The main advantages of this data driven methodology is that the ability of leveraging heterogeneous data streams that are available from the CPSs and the ability of performing the monitoring with minimal a priori domain knowledge. The main objective of the framework is to warn the operators of any degradation in cyber, physical or overall health of the CPS. The framework consists of four components: 1) Data acquisition and feature extraction, 2) state identification and real time state estimation, 3) cyber-physical health calculation and 4) operator warning generation. Further, this paper presents an initial implementation of the first three phases of the framework on a CPS testbed involving a Microgrid simulation and a cyber-network which connects the grid with its controller. The feature extraction method and the use of unsupervised learning algorithms are discussed. Experimental results are presented for the first two phases and the results showed that the data reflected different operating states and visualization techniques can be used to extract the relationships in data features.
In recent years, humanoid robots have become quite ubiquitous finding wide applicability in many different fields, spanning from education to entertainment and assistance. They can be considered as more complex cyber-physical systems (CPS) and, as such, they are exposed to the same vulnerabilities. This can be very dangerous for people acting that close with these robots, since attackers by exploiting their vulnerabilities, can not only violate people's privacy, but, more importantly, they can command the robot behavior causing them bodily harm, thus leading to devastating consequences. In this paper, we propose a solution not yet investigated in this field, which relies on the use of secure enclaves, which in our opinion could represent a valuable solution for coping with most of the possible attacks, while suggesting developers to adopt such a precaution during the robot design phase.
It is a research hotspot that using blockchain technology to solve the security problems of the Internet of Things (IoT). Although many related ideas have been proposed, there are very few literatures with theoretical and data support. This paper focuses on the research of model construction and performance evaluation. First, an IoT security model is established based on blockchain and InterPlanetary File System (IPFS). In this model, many security risks of traditional IoT architectures can be avoided, and system performance is significantly improved in distributed large capacity storage, concurrency and query. Secondly, the performance of the proposed model is evaluated through the average latency and throughput, which are meaningful for further research and optimization of this direction. Analysis and test results demonstrate the effectiveness of the blockchain-based security model.
Control systems for critical infrastructure are becoming increasingly interconnected while cyber threats against critical infrastructure are becoming more sophisticated and difficult to defend against. Historically, cyber security has emphasized building defenses to prevent loss of confidentiality, integrity, and availability in digital information and systems, but in recent years cyber attacks have demonstrated that no system is impenetrable and that control system operation may be detrimentally impacted. Cyber resilience has emerged as a complementary priority that seeks to ensure that digital systems can maintain essential performance levels, even while capabilities are degraded by a cyber attack. This paper examines how cyber security and cyber resilience may be measured and quantified in a control system environment. Load Frequency Control is used as an illustrative example to demonstrate how cyber attacks may be represented within mathematical models of control systems, to demonstrate how these events may be quantitatively measured in terms of cyber security or cyber resilience, and the differences and similarities between the two mindsets. These results demonstrate how various metrics are applied, the extent of their usability, and how it is important to analyze cyber-physical systems in a comprehensive manner that accounts for all the various parts of the system.
Cyber-physical systems are an integral component of weapons, sensors and autonomous vehicles, as well as cyber assets directly supporting tactical forces. Mission resilience of tactical networks affects command and control, which is important for successful military operations. Traditional engineering methods for mission assurance will not scale during battlefield operations. Commanders need useful mission resilience metrics to help them evaluate the ability of cyber assets to recover from incidents to fulfill mission essential functions. We develop 6 cyber resilience metrics for tactical network architectures. We also illuminate how psychometric modeling is necessary for future research to identify resilience metrics that are both applicable to the dynamic mission state and meaningful to commanders and planners.
Cyber-physical systems contribute to building new infrastructure in the modern world. These systems help realize missions reducing costs and risks. The seas being a harsh and dangerous environment are a perfect application of them. Unmanned Surface vehicles (USV) allow realizing normal and new tasks reducing risk and cost i.e. surveillance, water cleaning, environmental monitoring or search and rescue operations. Also, as they are unmanned vehicles they can extend missions to unpleasing and risky weather conditions. The novelty of these systems makes that new command and control platforms need to be developed. In this paper, we describe an implemented architecture with 5 separated levels. This structure increases security by defining roles and by limiting information exchanges.