Biblio

Found 1261 results

Filters: First Letter Of Title is I  [Clear All Filters]
2020-03-04
Puteaux, Pauline, Puech, William.  2019.  Image Analysis and Processing in the Encrypted Domain. 2019 IEEE International Conference on Image Processing (ICIP). :3020–3022.

In this research project, we are interested by finding solutions to the problem of image analysis and processing in the encrypted domain. For security reasons, more and more digital data are transferred or stored in the encrypted domain. However, during the transmission or the archiving of encrypted images, it is often necessary to analyze or process them, without knowing the original content or the secret key used during the encryption phase. We propose to work on this problem, by associating theoretical aspects with numerous applications. Our main contributions concern: data hiding in encrypted images, correction of noisy encrypted images, recompression of crypto-compressed images and secret image sharing.

2020-02-10
Fujita, Yuki, Inomata, Atsuo, Kashiwazaki, Hiroki.  2019.  Implementation and Evaluation of a Multi-Factor Web Authentication System with Individual Number Card and WebUSB. 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). :1–4.
As the number of Internet users increases, their usage also diversifies, and it is important to prevent Identity on the Internet (Digital Identity) from being violated. Unauthorized authentication is one of the methods to infringe Digital Identity. Multi-factor authentication has been proposed as a method for preventing unauthorized authentication. However, the cryptographic authenticator required for multi-factor authentication is expensive both financially and UX-wise for the user. In this paper, we design, implement and evaluate multi-factor authentication using My Number Card provided by public personal identification service and WebUSB, which is being standardized.
Arnaldy, Defiana, Perdana, Audhika Rahmat.  2019.  Implementation and Analysis of Penetration Techniques Using the Man-In-The-Middle Attack. 2019 2nd International Conference of Computer and Informatics Engineering (IC2IE). :188–192.

This research conducted a security evaluation website with Penetration Testing terms. This Penetration testing is performed using the Man-In-The-Middle Attack method. This method is still widely used by hackers who are not responsible for performing Sniffing, which used for tapping from a targeted computer that aims to search for sensitive data. This research uses some penetration testing techniques, namely SQL Injection, XSS (Cross-site Scripting), and Brute Force Attack. Penetration testing in this study was conducted to determine the security hole (vulnerability), so the company will know about their weakness in their system. The result is 85% success for the penetration testing that finds the vulnerability on the website.

2020-01-27
Shamsi, Kaveh, Li, Meng, Plaks, Kenneth, Fazzari, Saverio, Pan, David Z., Jin, Yier.  2019.  IP Protection and Supply Chain Security through Logic Obfuscation: A Systematic Overview. ACM Transactions on Design Automation of Electronic Systems (TODAES). 24:65:1-65:36.

The globalization of the semiconductor supply chain introduces ever-increasing security and privacy risks. Two major concerns are IP theft through reverse engineering and malicious modification of the design. The latter concern in part relies on successful reverse engineering of the design as well. IC camouflaging and logic locking are two of the techniques under research that can thwart reverse engineering by end-users or foundries. However, developing low overhead locking/camouflaging schemes that can resist the ever-evolving state-of-the-art attacks has been a challenge for several years. This article provides a comprehensive review of the state of the art with respect to locking/camouflaging techniques. We start by defining a systematic threat model for these techniques and discuss how various real-world scenarios relate to each threat model. We then discuss the evolution of generic algorithmic attacks under each threat model eventually leading to the strongest existing attacks. The article then systematizes defences and along the way discusses attacks that are more specific to certain kinds of locking/camouflaging. The article then concludes by discussing open problems and future directions.

2019-11-11
Tesfay, Welderufael B., Hofmann, Peter, Nakamura, Toru, Kiyomoto, Shinsaku, Serna, Jetzabel.  2018.  I Read but Don'T Agree: Privacy Policy Benchmarking Using Machine Learning and the EU GDPR. Companion Proceedings of the The Web Conference 2018. :163–166.
With the continuing growth of the Internet landscape, users share large amount of personal, sometimes, privacy sensitive data. When doing so, often, users have little or no clear knowledge about what service providers do with the trails of personal data they leave on the Internet. While regulations impose rather strict requirements that service providers should abide by, the defacto approach seems to be communicating data processing practices through privacy policies. However, privacy policies are long and complex for users to read and understand, thus failing their mere objective of informing users about the promised data processing behaviors of service providers. To address this pertinent issue, we propose a machine learning based approach to summarize the rather long privacy policy into short and condensed notes following a risk-based approach and using the European Union (EU) General Data Protection Regulation (GDPR) aspects as assessment criteria. The results are promising and indicate that our tool can summarize lengthy privacy policies in a short period of time, thus supporting users to take informed decisions regarding their information disclosure behaviors.
2019-12-16
Leu, Patrick, Puddu, Ivan, Ranganathan, Aanjhan, Capkun, Srdjan.  2018.  I Send, Therefore I Leak: Information Leakage in Low-Power Wide Area Networks. Proceedings of the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :23–33.
Low-power wide area networks (LPWANs), such as LoRa, are fast emerging as the preferred networking technology for large-scale Internet of Things deployments (e.g., smart cities). Due to long communication range and ultra low power consumption, LPWAN-enabled sensors are today being deployed in a variety of application scenarios where sensitive information is wirelessly transmitted. In this work, we study the privacy guarantees of LPWANs, in particular LoRa. We show that, although the event-based duty cycling of radio communication, i.e., transmission of radio signals only when an event occurs, saves power, it inherently leaks information. This information leakage is independent of the implemented crypto primitives. We identify two types of information leakage and show that it is hard to completely prevent leakage without incurring significant additional communication and computation costs.
2020-11-09
Saeed, S. M., Cui, X., Zulehner, A., Wille, R., Drechsler, R., Wu, K., Karri, R..  2018.  IC/IP Piracy Assessment of Reversible Logic. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1–8.
Reversible logic is a building block for adiabatic and quantum computing in addition to other applications. Since common functions are non-reversible, one needs to embed them into proper-size reversible functions by adding ancillary inputs and garbage outputs. We explore the Intellectual Property (IP) piracy of reversible circuits. The number of embeddings of regular functions in a reversible function and the percent of leaked ancillary inputs measure the difficulty of recovering the embedded function. To illustrate the key concepts, we study reversible logic circuits designed using reversible logic synthesis tools based on Binary Decision Diagrams and Quantum Multi-valued Decision Diagrams.
2019-02-25
Lesisa, T. G., Marnewick, A., Nel, H..  2018.  The Identification of Supplier Selection Criteria Within a Risk Management Framework Towards Consistent Supplier Selection. 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). :913–917.
The aim of the study is to evaluate the consistency of supplier risk assessment performed during the supplier selection process. Existing literature indicates that current supplier selection processes yield inconsistent results. Consistent supplier selection cannot be accomplished without stable risk assessment performed during the process. A case study was conducted in a train manufacturer in South Africa, and document analysis, interviews and questionnaires were employed to source information and data. Triangulation and pattern matching enabled a comparative study between literature and practice from which findings were derived. The study suggests selection criteria that may be considered when performing supplier risk assessment during the selection process. The findings indicate that structured supplier risk assessment with predefined supplier selection criteria may eliminate inconsistencies in supplier assessment and selection.
2019-12-16
Guija, Daniel, Siddiqui, Muhammad Shuaib.  2018.  Identity and Access Control for Micro-services Based 5G NFV Platforms. Proceedings of the 13th International Conference on Availability, Reliability and Security. :46:1–46:10.
The intrinsic use of SDN/NFV technologies in 5G infrastructures promise to enable the flexibility and programmability of networks to ensure lower cost of network and service provisioning and operation, however it brings new challenges and requirements due to new architectural changes. In terms of security, authentication and authorization functions need to evolve towards the new and emerging 5G virtualization platforms in order to meet the requirements of service providers and infrastructure operators. Over the years, a lot of authentication techniques have been used. Now, a wide range of options arise allowing to extend existing authentication and authorization mechanisms. This paper focuses on proposing and showcasing a 5G platform oriented solution among different approaches to integrate authentication and authorization functionalities, an adapted secure and stateless mechanism, providing identity and permissions management to handle not only users, but also system micro-services, in a network functions virtualization management and orchestration (NFV MANO) system, oriented to deploy virtualized services. The presented solution uses the NFV-based SONATA Service Platform which offers capabilities for a continuous integration and delivery DevOps methodology that allow high levels of programmability and flexibility to manage the entire life cycle of Virtual Network Functions, and enables the perfect scenario to showcase different approaches for authentication and authorization mechanisms for users and micro-services in a 5G platform.
2019-11-25
Ye, Ruisong, Li, Yinhua, Li, Yajuan.  2018.  An Image Encryption Scheme Based on Fractal Interpolation. Proceedings of the 3rd International Conference on Multimedia and Image Processing. :52–56.
In this paper, a novel chaotic image encryption scheme based on the inverse fractal interpolation function system is proposed. The inverse fractal interpolation function system associated with fractal interpolation surface is applied to generate chaotic sequences. The derived sequences are then employed to permute the pixel positions to get the shuffled image by chaotic sequence sorting. The obtained chaotic sequences are then quantized to yield one pseudo-random gray value sequence used to perform diffusion to enhance the security. The security and performance of the proposed image encryption scheme have been analysed, including histograms, correlation coefficients, information entropy, differential analysis, etc. All the experimental results suggest that the proposed image encryption scheme is robust and secure and can be used for secure image and video communication applications.
2019-01-21
Cho, S., Chen, G., Chun, H., Coon, J. P., O'Brien, D..  2018.  Impact of multipath reflections on secrecy in VLC systems with randomly located eavesdroppers. 2018 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
Considering reflected light in physical layer security (PLS) is very important because a small portion of reflected light enables an eavesdropper (ED) to acquire legitimate information. Moreover, it would be a practical strategy for an ED to be located at an outer area of the room, where the reflection light is strong, in order to escape the vigilance of a legitimate user. Therefore, in this paper, we investigate the impact of multipath reflections on PLS in visible light communication in the presence of randomly located eavesdroppers. We apply spatial point processes to characterize randomly distributed EDs. The generalized error in signal-to-noise ratio that occurs when reflections are ignored is defined as a function of the distance between the receiver and the wall. We use this error for quantifying the domain of interest that needs to be considered from the secrecy viewpoint. Furthermore, we investigate how the reflection affects the secrecy outage probability (SOP). It is shown that the effect of the reflection on the SOP can be removed by adjusting the light emitting diode configuration. Monte Carlo simulations and numerical results are given to verify our analysis.
2019-03-25
Shaik, Altaf, Borgaonkar, Ravishankar, Park, Shinjo, Seifert, Jean-Pierre.  2018.  On the Impact of Rogue Base Stations in 4G/LTE Self Organizing Networks. Proceedings of the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :75–86.
Mobile network operators choose Self Organizing Network (SON) concept as a cost-effective method to deploy LTE/4G networks and meet user expectations for high quality of service and bandwidth. The main objective of SON is to introduce automation into network management activities and reduce human intervention. SON enabled LTE networks heavily rely on the information acquired from mobile phones to provide self-configuration, self-optimization, and self-healing features. However, mobile phones can be attacked over-the-air using rogue base stations. In this paper, we carefully study SON related LTE/4G security specifications and reveal several vulnerabilities. Our key idea is to introduce a rogue eNodeB that uses legitimate mobile devices as a covert channel to launch attacks against SON enabled LTE networks. We demonstrate low-cost, practical, silent and persistent Denial of Service attacks against the network and end-users by injecting fake measurement and configuration information into the SON system. An active attacker can shut down network services in 2 km2 area of a city for a certain period of time and also block network services to a selective set of mobile phones in a targeted area of 200 m to 2 km in radius. With the help of low cost tools, we design an experimental setup and evaluate these attacks on commercial networks. We present strategies to mitigate our attacks and outline possible reasons that may explain why these vulnerabilities exist in the system.
2020-10-12
Chowdhury, Noman H., Adam, Marc T. P., Skinner, Geoffrey.  2018.  The Impact of Time Pressure on Human Cybersecurity Behavior: An Integrative Framework. 2018 26th International Conference on Systems Engineering (ICSEng). :1–10.
Cybersecurity is a growing concern for private individuals and professional entities. Thereby, reports have shown that the majority of cybersecurity incidents occur because users fail to behave securely. Research on human cybersecurity (HCS) behavior suggests that time pressure is one of the important driving factors behind insecure HCS behavior. However, as our review reveals, studies on the role of time pressure in HCS are scant and there is no framework that can inform researchers and practitioners on this matter. In this paper, we present a conceptual framework consisting of contexts, psychological constructs, and boundary conditions pertaining to the role time pressure plays on HCS behavior. The framework is also validated and extended by findings from semi-structured interviews of different stakeholder groups comprising of cybersecurity experts, professionals, and general users. The framework will serve as a guideline for future studies exploring different aspects of time pressure in cybersecurity contexts and also to identify potential countermeasures for the detrimental impact of time pressure on HCS behavior.
2019-01-21
Adina, Prasesh, Venkatnarayan, Raghav H., Shahzad, Muhammad.  2018.  Impacts & Detection of Network Layer Attacks on IoT Networks. Proceedings of the 1st ACM MobiHoc Workshop on Mobile IoT Sensing, Security, and Privacy. :2:1–2:6.
With the advent of the Internet of Things (IoT), wireless sensor and actuator networks, subsequently referred to as IoT networks (IoTNs), are proliferating at an unprecedented rate in several newfound areas such as smart cities, health care, and transportation, and consequently, securing them is of paramount importance. In this paper, we present several useful insights from an exploratory study of the impacts of network layer attacks on IoTNs. We envision that these insights will guide the design of future frameworks to defend against network layer attacks. We also present a preliminary such framework and demonstrate its effectiveness in detecting network layer attacks through experiments on a real IoTN test-bed.
2019-10-02
Bronchain, Olivier, Dassy, Louis, Faust, Sebastian, Standaert, Fran\c cois-Xavier.  2018.  Implementing Trojan-Resilient Hardware from (Mostly) Untrusted Components Designed by Colluding Manufacturers. Proceedings of the 2018 Workshop on Attacks and Solutions in Hardware Security. :1–10.
At CCS 2016, Dziembowski et al. proved the security of a generic compiler able to transform any circuit into a Trojan-resilient one based on a (necessary) number of trusted gates. Informally, it exploits techniques from the Multi-Party Computation (MPC) literature in order to exponentially reduce the probability of a successful Trojan attack. As a result, its concrete relevance depends on ( i ) the possibility to reach good performances with affordable hardware, and ( ii ) the actual number of trusted gates the solution requires. In this paper, we assess the practicality of the CCS 2016 Trojan-resilient compiler based on a block cipher case study, and optimize its performances in different directions. From the algorithmic viewpoint, we use a recent MPC protocol by Araki et al. (CCS 2016) in order to increase the throughput of our implementations, and we investigate various block ciphers and S-box representations to reduce their communication complexity. From a design viewpoint, we develop an architecture that balances the computation and communication cost of our Trojan-resilient circuits. From an implementation viewpoint, we describe a prototype hardware combining several commercial FPGAs on a dedicated printed circuit board. Thanks to these advances, we exhibit realistic performances for a Trojan-resilient circuit purposed for high-security applications, and confirm that the amount of trusted gates required by the CCS 2016 compiler is well minimized.
2019-12-18
Guleria, Charu, Verma, Harsh Kumar.  2018.  Improved Detection and Mitigation of DDoS Attack in Vehicular ad hoc Network. 2018 4th International Conference on Computing Communication and Automation (ICCCA). :1–4.
Vehicular ad hoc networks (VANETs) are eminent type of Mobile ad hoc Networks. The network created in VANETs is quite prone to security problem. In this work, a new mechanism is proposed to study the security of VANETs against DDoS attack. The proposed mechanism focuses on distributed denial of service attacks. The main idea of the paper is to detect the DDoS attack and mitigate it. The work consists of two stages, initially attack topology and network congestion is created. The second stage is to detect and mitigate the DDoS attack. The existing method is compared with the proposed method for mitigating DDoS attacks in VANETs. The existing solutions presented by the various researchers are also compared and analyzed. The solution for such kind of problem is provided which is used to detect and mitigate DDoS attack by using greedy approach. The network environment is created using NS-2. The results of simulation represent that the proposed approach is better in the terms of network packet loss, routing overhead and network throughput.
2019-03-25
Xiao, Lili, Xuan, Guixin, Wu, Yongbin.  2018.  An Improved Digital Chaotic Encoder. Proceedings of the 3rd International Conference on Multimedia Systems and Signal Processing. :114–118.
Aiming at the defect that the decoder does not need to be initialized before decoding and the attackers can easily reconstruct the decoder structure, a new method of codec improvement is proposed. The improved decoder can restore the original information sequence correctly only when the initial state of the coder and decoder is the same. The simulation results show that the improved chaotic codec structure has better confidentiality than the original structure.
2020-06-01
Alizai, Zahoor Ahmed, Tareen, Noquia Fatima, Jadoon, Iqra.  2018.  Improved IoT Device Authentication Scheme Using Device Capability and Digital Signatures. 2018 International Conference on Applied and Engineering Mathematics (ICAEM). :1–5.
Internet of Things (IoT) device authentication is weighed as a very important step from security perspective. Privacy and security of the IoT devices and applications is the major issue. From security perspective, important issue that needs to be addressed is the authentication mechanism, it has to be secure from different types of attacks and is easy to implement. The paper gives general idea about how different authentication mechanisms work, and then secure and efficient multi-factor device authentication scheme idea is proposed. The proposed scheme idea uses digital signatures and device capability to authenticate a device. In the proposed scheme device will only be allowed into the network if it is successfully authenticated through multi-factor authentication otherwise the authentication process fails and whole authentication process will restart. By analyzing the proposed scheme idea, it can be seen that the scheme is efficient and has less over head. The scheme not only authenticates the device very efficiently through multi-factor authentication but also authenticates the authentication server with the help of digital signatures. The proposed scheme also mitigates the common attacks like replay and man in the middle because of nonce and timestamp.
2019-12-30
Sharma, Mukesh Kumar, Somwanshi, Devendra.  2018.  Improvement in Homomorphic Encryption Algorithm with Elliptic Curve Cryptography and OTP Technique. 2018 3rd International Conference and Workshops on Recent Advances and Innovations in Engineering (ICRAIE). :1–6.
Cloud computing is a technology is where client require not to stress over the expense of equipment establishment and their support cost. Distributed computing is presently turned out to be most prominent innovation on account of its accessibility, ease and some different elements. Yet, there is a few issues in distributed computing, the principle one is security in light of the fact that each client store their valuable information on the system so they need their information ought to be shielded from any unapproved get to, any progressions that isn't done for client's benefit. To take care of the issue of Key administration, Key Sharing different plans have been proposed. The outsider examiner is the plan for key administration and key sharing. The primary preferred standpoint of this is the cloud supplier can encourage the administration which was accessible by the customary outsider evaluator and make it trustful. The outsider examining plan will be fizzled, if the outsider's security is endangered or of the outsider will be malignant. To take care of the issue, there is another modular for key sharing and key administration in completely Homomorphic Encryption conspire is outlined. In this paper we utilized the symmetric key understanding calculation named Diffie Hellman to make session key between two gatherings who need to impart and elliptic curve cryptography to create encryption keys rather than RSA and have utilized One Time Password (OTP) for confirming the clients.
2020-07-24
Zhang, Leyou, Liang, Pengfei, Mu, Yi.  2018.  Improving Privacy-Preserving and Security for Decentralized Key-Policy Attributed-Based Encryption. IEEE Access. 6:12736—12745.
Decentralized attribute-based encryption (ABE) is an efficient and flexible multi-authority attribute-based encryption system, since it does not requires the central authority and does not need to cooperate among the authorities for creating public parameters. Unfortunately, recent works show that the reality of the privacy preserving and security in almost well-known decentralized key policy ABE (KP-ABE) schemes are doubtful. How to construct a decentralized KP-ABE with the privacy-preserving and user collusion avoidance is still a challenging problem. Most recently, Y. Rahulamathavam et al. proposed a decentralized KP ABE scheme to try avoiding user collusion and preserving the user's privacy. However, we exploit the vulnerability of their scheme in this paper at first and present a collusion attack on their decentralized KP-ABE scheme. The attack shows the user collusion cannot be avoided. Subsequently, a new privacy-preserving decentralized KP-ABE is proposed. The proposed scheme avoids the linear attacks at present and achieves the user collusion avoidance. We also show that the security of the proposed scheme is reduced to decisional bilinear Diffie-Hellman assumption. Finally, numerical experiments demonstrate the efficiency and validity of the proposed scheme.
2019-09-23
Pham, Quan, Malik, Tanu, That, Dai Hai Ton, Youngdahl, Andrew.  2018.  Improving Reproducibility of Distributed Computational Experiments. Proceedings of the First International Workshop on Practical Reproducible Evaluation of Computer Systems. :2:1–2:6.
Conference and journal publications increasingly require experiments associated with a submitted article to be repeatable. Authors comply to this requirement by sharing all associated digital artifacts, i.e., code, data, and environment configuration scripts. To ease aggregation of the digital artifacts, several tools have recently emerged that automate the aggregation of digital artifacts by auditing an experiment execution and building a portable container of code, data, and environment. However, current tools only package non-distributed computational experiments. Distributed computational experiments must either be packaged manually or supplemented with sufficient documentation. In this paper, we outline the reproducibility requirements of distributed experiments using a distributed computational science experiment involving use of message-passing interface (MPI), and propose a general method for auditing and repeating distributed experiments. Using Sciunit we show how this method can be implemented. We validate our method with initial experiments showing application re-execution runtime can be improved by 63% with a trade-off of longer run-time on initial audit execution.
2020-09-28
Gao, Meng-Qi, Han, Jian-Min, Lu, Jian-Feng, Peng, Hao, Hu, Zhao-Long.  2018.  Incentive Mechanism for User Collaboration on Trajectory Privacy Preservation. 2018 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :1976–1981.
Collaborative trajectory privacy preservation (CTPP) scheme is an effective method for continuous queries. However, collaborating with other users need pay some cost. Therefore, some rational and selfish users will not choose collaboration, which will result in users' privacy disclosing. To solve the problem, this paper proposes a collaboration incentive mechanism by rewarding collaborative users and punishing non-collaborative users. The paper models the interactions of users participating in CTPP as a repeated game and analysis the utility of participated users. The analytical results show that CTPP with the proposed incentive mechanism can maximize user's payoffs. Experiments show that the proposed mechanism can effectively encourage users' collaboration behavior and effectively preserve the trajectory privacy for continuous query users.
2019-06-10
Vaas, Christian, Papadimitratos, Panos, Martinovic, Ivan.  2018.  Increasing Mix-Zone Efficacy for Pseudonym Change in VANETs Using Chaff Messages. Proceedings of the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :287–288.
Vehicular ad-hoc networks (VANETs) are designed to play a key role in the development of future transportation systems. Although cooperative awareness messages provide the required situational awareness for new safety and efficiency applications, they also introduce a new attack vector to compromise privacy. The use of ephemeral credentials called pseudonyms for privacy protection was proposed while ensuring the required security properties. In order to prevent an attacker from linking old to new pseudonyms, mix-zones provide a region in which vehicles can covertly change their signing material. In this poster, we extend the idea of mix-zones to mitigate pseudonym linking attacks with a mechanism inspired by chaff-based privacy defense techniques for mix-networks. By providing chaff trajectories, our system restores the efficacy of mix-zones to compensate for a lack of vehicles available to participate in the mixing procedure. Our simulation results of a realistic traffic scenario show that a significant improvement is possible.
2019-02-25
Hai, Wen, Jain, Nisha, Wydra, Andrzej, Thalmann, Nadia Magnenat, Thalmann, Daniel.  2018.  Increasing the Feeling of Social Presence by Incorporating Realistic Interactions in Multi-Party VR. Proceedings of the 31st International Conference on Computer Animation and Social Agents. :7-10.
Behavioral realism and realistic interactions are major criteria for improving social presence in virtual reality environments. We focus on multi-party VR applications where computer agents and avatars interact, share and collaborate with each other using objects. Our formulation employs realistic animations to simulate human-like behavioral motions of computer agents while they interact with avatars to enhance the sense of social presence in the VR environment. We exemplify our proposed model in a VR volleyball game setup. We model specific underlying interactions like gazing, collision detection and miscellaneous reactions (like how to pick a volleyball, how to transfer the ball to server) between computers players and avatars in the VR Volleyball game. We conduct a preliminary user survey to illustrate the significance of inclusion of realistic interactions for improving sense of social presence in a multi-party VR environment.
2019-08-26
Paletov, Rumen, Tsankov, Petar, Raychev, Veselin, Vechev, Martin.  2018.  Inferring Crypto API Rules from Code Changes. Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation. :450–464.
Creating and maintaining an up-to-date set of security rules that match misuses of crypto APIs is challenging, as crypto APIs constantly evolve over time with new cryptographic primitives and settings, making existing ones obsolete. To address this challenge, we present a new approach to extract security fixes from thousands of code changes. Our approach consists of: (i) identifying code changes, which often capture security fixes, (ii) an abstraction that filters irrelevant code changes (such as refactorings), and (iii) a clustering analysis that reveals commonalities between semantic code changes and helps in eliciting security rules. We applied our approach to the Java Crypto API and showed that it is effective: (i) our abstraction effectively filters non-semantic code changes (over 99% of all changes) without removing security fixes, and (ii) over 80% of the code changes are security fixes identifying security rules. Based on our results, we identified 13 rules, including new ones not supported by existing security checkers.