Biblio

Found 473 results

Filters: First Letter Of Title is L  [Clear All Filters]
2019-11-04
Bukasa, Sebanjila K., Lashermes, Ronan, Lanet, Jean-Louis, Leqay, Axel.  2018.  Let's Shock Our IoT's Heart: ARMv7-M Under (Fault) Attacks. Proceedings of the 13th International Conference on Availability, Reliability and Security. :33:1-33:6.

A fault attack is a well-known technique where the behaviour of a chip is voluntarily disturbed by hardware means in order to undermine the security of the information handled by the target. In this paper, we explore how Electromagnetic fault injection (EMFI) can be used to create vulnerabilities in sound software, targeting a Cortex-M3 microcontroller. Several use-cases are shown experimentally: control flow hijacking, buffer overflow (even with the presence of a canary), covert backdoor insertion and Return Oriented Programming can be achieved even if programs are not vulnerable in a software point of view. These results suggest that the protection of any software against vulnerabilities must take hardware into account as well.

2019-12-16
Pal, Manjish, Sahu, Prashant, Jaiswal, Shailesh.  2018.  LevelTree: A New Scalable Data Center Networks Topology. 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). :482-486.

In recent time it has become very crucial for the data center networks (DCN) to broaden the system limit to be able to meet with the increasing need of cloud based applications. A decent DCN topology must comprise of numerous properties for low diameter, high bisection bandwidth, ease of organization and so on. In addition, a DCN topology should depict aptness in failure resiliency, scalability, construction and routing. In this paper, we introduce a new Data Center Network topology termed LevelTree built up with several modules grows as a tree topology and each module is constructed from a complete graph. LevelTree demonstrates great topological properties and it beats critical topologies like Jellyfish, VolvoxDC, and Fattree regarding providing a superior worthwhile plan with greater capacity.

2019-04-05
Ardi, Calvin, Heidemann, John.  2018.  Leveraging Controlled Information Sharing for Botnet Activity Detection. Proceedings of the 2018 Workshop on Traffic Measurements for Cybersecurity. :14-20.

Today's malware often relies on DNS to enable communication with command-and-control (C&C). As defenses that block C&C traffic improve, malware use sophisticated techniques to hide this traffic, including "fast flux" names and Domain-Generation Algorithms (DGAs). Detecting this kind of activity requires analysis of DNS queries in network traffic, yet these signals are sparse. As bot countermeasures grow in sophistication, detecting these signals increasingly requires the synthesis of information from multiple sites. Yet sharing security information across organizational boundaries to date has been infrequent and ad hoc because of unknown risks and uncertain benefits. In this paper, we take steps towards formalizing cross-site information sharing and quantifying the benefits of data sharing. We use a case study on DGA-based botnet detection to evaluate how sharing cybersecurity data can improve detection sensitivity and allow the discovery of malicious activity with greater precision.

2019-02-14
Jenkins, J., Cai, H..  2018.  Leveraging Historical Versions of Android Apps for Efficient and Precise Taint Analysis. 2018 IEEE/ACM 15th International Conference on Mining Software Repositories (MSR). :265-269.

Today, computing on various Android devices is pervasive. However, growing security vulnerabilities and attacks in the Android ecosystem constitute various threats through user apps. Taint analysis is a common technique for defending against these threats, yet it suffers from challenges in attaining practical simultaneous scalability and effectiveness. This paper presents a novel approach to fast and precise taint checking, called incremental taint analysis, by exploiting the evolving nature of Android apps. The analysis narrows down the search space of taint checking from an entire app, as conventionally addressed, to the parts of the program that are different from its previous versions. This technique improves the overall efficiency of checking multiple versions of the app as it evolves. We have implemented the techniques as a tool prototype, EVOTAINT, and evaluated our analysis by applying it to real-world evolving Android apps. Our preliminary results show that the incremental approach largely reduced the cost of taint analysis, by 78.6% on average, yet without sacrificing the analysis effectiveness, relative to a representative precise taint analysis as the baseline.

2019-02-08
Bollig, Evan F., Allan, Graham T., Lynch, Benjamin J., Huerta, Yectli A., Mix, Mathew, Munsell, Edward A., Benson, Raychel M., Swartz, Brent.  2018.  Leveraging OpenStack and Ceph for a Controlled-Access Data Cloud. Proceedings of the Practice and Experience on Advanced Research Computing. :18:1-18:7.

While traditional HPC has and continues to satisfy most workflows, a new generation of researchers has emerged looking for sophisticated, scalable, on-demand, and self-service control of compute infrastructure in a cloud-like environment. Many also seek safe harbors to operate on or store sensitive and/or controlled-access data in a high capacity environment. To cater to these modern users, the Minnesota Supercomputing Institute designed and deployed Stratus, a locally-hosted cloud environment powered by the OpenStack platform, and backed by Ceph storage. The subscription-based service complements existing HPC systems by satisfying the following unmet needs of our users: a) on-demand availability of compute resources; b) long-running jobs (i.e., 30 days); c) container-based computing with Docker; and d) adequate security controls to comply with controlled-access data requirements. This document provides an in-depth look at the design of Stratus with respect to security and compliance with the NIH's controlled-access data policy. Emphasis is placed on lessons learned while integrating OpenStack and Ceph features into a so-called "walled garden", and how those technologies influenced the security design. Many features of Stratus, including tiered secure storage with the introduction of a controlled-access data "cache", fault-tolerant live-migrations, and fully integrated two-factor authentication, depend on recent OpenStack and Ceph features.

Yang, B., Xu, G., Zeng, X., Liu, J., Zhang, Y..  2018.  A Lightweight Anonymous Mobile User Authentication Scheme for Smart Grid. 2018 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :821-827.

Smart Grid (SG) technology has been developing for years, which facilitates users with portable access to power through being applied in numerous application scenarios, one of which is the electric vehicle charging. In order to ensure the security of the charging process, users need authenticating with the smart meter for the subsequent communication. Although there are many researches in this field, few of which have endeavored to protect the anonymity and the untraceability of users during the authentication. Further, some studies consider the problem of user anonymity, but they are non-light-weight protocols, even some can not assure any fairness in key agreement. In this paper, we first points out that existing authentication schemes for Smart Grid are neither lack of critical security nor short of important property such as untraceability, then we propose a new two-factor lightweight user authentication scheme based on password and biometric. The authentication process of the proposed scheme includes four message exchanges among the user mobile, smart meter and the cloud server, and then a security one-time session key is generated for the followed communication process. Moreover, the scheme has some new features, such as the protection of the user's anonymity and untraceability. Security analysis shows that our proposed scheme can resist various well-known attacks and the performance analysis shows that compared to other three schemes, our scheme is more lightweight, secure and efficient.

2019-02-14
Yoshikawa, Masaya, Nozaki, Yusuke.  2018.  Lightweight Cipher Aware Countermeasure Using Random Number Masks and Its Evaluation. Proceedings of the 2Nd International Conference on Vision, Image and Signal Processing. :55:1-55:5.

Recent advancements in the Internet of Things (IoT) technology has left built-in devices vulnerable to interference from external networks. Power analysis attacks against cryptographic circuits are of particular concern, as they operate by illegally analyzing confidential information via power consumption of a cryptographic circuit. In response to these threats, many researchers have turned to lightweight ciphers, which can be embedded in small-scale circuits, coupled with countermeasures to increase built-in device security, even against power analysis attacks. However, while researchers have examined the efficacy of embedding lightweight ciphers in circuits, neither cost nor tamper resistance have been considered in detail. To use lightweight ciphers and improve tamper resistance in the future, it is necessary to investigate the relationship between the cost of embedding a lightweight cipher with a countermeasure against power analysis in a circuit and the tamper resistance of the cipher. Accordingly, the present study determined the tamper resistance of TWINE, a typical lightweight cipher, both with and without a countermeasure; costs were calculated for embedding the cipher with and without a countermeasure as well.

2019-06-24
Naeem, H., Guo, B., Naeem, M. R..  2018.  A light-weight malware static visual analysis for IoT infrastructure. 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD). :240–244.

Recently a huge trend on the internet of things (IoT) and an exponential increase in automated tools are helping malware producers to target IoT devices. The traditional security solutions against malware are infeasible due to low computing power for large-scale data in IoT environment. The number of malware and their variants are increasing due to continuous malware attacks. Consequently, the performance improvement in malware analysis is critical requirement to stop rapid expansion of malicious attacks in IoT environment. To solve this problem, the paper proposed a novel framework for classifying malware in IoT environment. To achieve flne-grained malware classification in suggested framework, the malware image classification system (MICS) is designed for representing malware image globally and locally. MICS first converts the suspicious program into the gray-scale image and then captures hybrid local and global malware features to perform malware family classification. Preliminary experimental outcomes of MICS are quite promising with 97.4% classification accuracy on 9342 windows suspicious programs of 25 families. The experimental results indicate that proposed framework is quite capable to process large-scale IoT malware.

2019-10-02
Garcia, Joshua, Hammad, Mahmoud, Malek, Sam.  2018.  Lightweight, Obfuscation-Resilient Detection and Family Identification of Android Malware. Proceedings of the 40th International Conference on Software Engineering. :497–497.

The number of malicious Android apps has been and continues to increase rapidly. These malware can damage or alter other files or settings, install additional applications, obfuscate their behaviors, propagate quickly, and so on. To identify and handle such malware, a security analyst can significantly benefit from identifying the family to which a malicious app belongs rather than only detecting if an app is malicious. To address these challenges, we present a novel machine learning-based Android malware detection and family-identification approach, RevealDroid, that operates without the need to perform complex program analyses or extract large sets of features. RevealDroid's selected features leverage categorized Android API usage, reflection-based features, and features from native binaries of apps. We assess RevealDroid for accuracy, efficiency, and obfuscation resilience using a large dataset consisting of more than 54,000 malicious and benign apps. Our experiments show that RevealDroid achieves an accuracy of 98% in detection of malware and an accuracy of 95% in determination of their families. We further demonstrate RevealDroid's superiority against state-of-the-art approaches. [URL of original paper: https://dl.acm.org/citation.cfm?id=3162625]

2019-12-17
Gritti, Clémentine, Molva, Refik, Önen, Melek.  2018.  Lightweight Secure Bootstrap and Message Attestation in the Internet of Things. Proceedings of the 33rd Annual ACM Symposium on Applied Computing. :775-782.

Internet of Things (IoT) offers new opportunities for business, technology and science but it also raises new challenges in terms of security and privacy, mainly because of the inherent characteristics of this environment: IoT devices come from a variety of manufacturers and operators and these devices suffer from constrained resources in terms of computation, communication and storage. In this paper, we address the problem of trust establishment for IoT and propose a security solution that consists of a secure bootstrap mechanism for device identification as well as a message attestation mechanism for aggregate response validation. To achieve both security requirements, we approach the problem in a confined environment, named SubNets of Things (SNoT), where various devices depend on it. In this context, devices are uniquely and securely identified thanks to their environment and their role within it. Additionally, the underlying message authentication technique features signature aggregation and hence, generates one compact response on behalf of all devices in the subnet.

2019-10-02
Sharma, V., Vithalkar, A., Hashmi, M..  2018.  Lightweight Security Protocol for Chipless RFID in Internet of Things (IoT) Applications. 2018 10th International Conference on Communication Systems Networks (COMSNETS). :468–471.

The RFID based communication between objects within the framework of IoT is potentially very efficient in terms of power requirements and system complexity. The new design incorporating the emerging chipless RFID tags has the potential to make the system more efficient and simple. However, these systems are prone to privacy and security risks and these challenges associated with such systems have not been addressed appropriately in the broader IoT framework. In this context, a lightweight collision free algorithm based on n-bit pseudo random number generator, X-OR hash function, and rotations for chipless RFID system is presented. The algorithm has been implemented on an 8-bit open-loop resonator based chipless RFID tag based system and is validated using BASYS 2 FPGA board based platform. The proposed scheme has been shown to possess security against various attacks such as Denial of Service (DoS), tag/reader anonymity, and tag impersonation.

2019-12-05
Zhai, Zhongyi, Qian, Junyan, Tao, Yuan, Zhao, Lingzhong, Cheng, Bo.  2018.  A Lightweight Timestamp-Based MAC Detection Scheme for XOR Network Coding in Wireless Sensor Networks. Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. :735-737.

Network coding has become a promising approach to improve the communication capability for WSN, which is vulnerable to malicious attacks. There are some solutions, including cryptographic and information-theory schemes, just can thwart data pollution attacks but are not able to detect replay attacks. In the paper, we present a lightweight timestamp-based message authentication code method, called as TMAC. Based on TMAC and the time synchronization technique, the proposed detection scheme can not only resist pollution attacks but also defend replay attacks simultaneously. Finally

2019-12-16
Zhao, Liang, Chen, Liqun.  2018.  A Linear Distinguisher and Its Application for Analyzing Privacy-Preserving Transformation Used in Verifiable (Outsourced) Computation. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :253-260.

A distinguisher is employed by an adversary to explore the privacy property of a cryptographic primitive. If a cryptographic primitive is said to be private, there is no distinguisher algorithm that can be used by an adversary to distinguish the encodings generated by this primitive with non-negligible advantage. Recently, two privacy-preserving matrix transformations first proposed by Salinas et al. have been widely used to achieve the matrix-related verifiable (outsourced) computation in data protection. Salinas et al. proved that these transformations are private (in terms of indistinguishability). In this paper, we first propose the concept of a linear distinguisher and two constructions of the linear distinguisher algorithms. Then, we take those two matrix transformations (including Salinas et al.\$'\$s original work and Yu et al.\$'\$s modification) as example targets and analyze their privacy property when our linear distinguisher algorithms are employed by the adversaries. The results show that those transformations are not private even against passive eavesdropping.

2020-05-22
Wang, Xi, Yao, Jun, Ji, Hongxia, Zhang, Ze, Li, Chen, Ma, Beizhi.  2018.  A Local Integral Hash Nearest Neighbor Algorithm. 2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :544—548.

Nearest neighbor search algorithm plays a very important role in computer image algorithm. When the search data is large, we need to use fast search algorithm. The current fast retrieval algorithms are tree based algorithms. The efficiency of the tree algorithm decreases sharply with the increase of the data dimension. In this paper, a local integral hash nearest neighbor algorithm of the spatial space is proposed to construct the tree structure by changing the way of the node of the access tree. It is able to express data distribution characteristics. After experimental testing, this paper achieves more efficient performance in high dimensional data.

2019-09-26
Jackson, K. A., Bennett, B. T..  2018.  Locating SQL Injection Vulnerabilities in Java Byte Code Using Natural Language Techniques. SoutheastCon 2018. :1-5.

With so much our daily lives relying on digital devices like personal computers and cell phones, there is a growing demand for code that not only functions properly, but is secure and keeps user data safe. However, ensuring this is not such an easy task, and many developers do not have the required skills or resources to ensure their code is secure. Many code analysis tools have been written to find vulnerabilities in newly developed code, but this technology tends to produce many false positives, and is still not able to identify all of the problems. Other methods of finding software vulnerabilities automatically are required. This proof-of-concept study applied natural language processing on Java byte code to locate SQL injection vulnerabilities in a Java program. Preliminary findings show that, due to the high number of terms in the dataset, using singular decision trees will not produce a suitable model for locating SQL injection vulnerabilities, while random forest structures proved more promising. Still, further work is needed to determine the best classification tool.

2019-11-04
Altay, Osman, Ulas, Mustafa.  2018.  Location Determination by Processing Signal Strength of Wi-Fi Routers in the Indoor Environment with Linear Discriminant Classifier. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1-4.

Location determination in the indoor areas as well as in open areas is important for many applications. But location determination in the indoor areas is a very difficult process compared to open areas. The Global Positioning System (GPS) signals used for position detection is not effective in the indoor areas. Wi-Fi signals are a widely used method for localization detection in the indoor area. In the indoor areas, localization can be used for many different purposes, such as intelligent home systems, locations of people, locations of products in the depot. In this study, it was tried to determine localization for with the classification method for 4 different areas by using Wi-Fi signal values obtained from different routers for indoor location determination. Linear discriminant analysis (LDA) classification was used for classification. In the test using 10k fold cross-validation, 97.2% accuracy value was calculated.

2018-12-03
Catania, E., Corte, A. La.  2018.  Location Privacy in Virtual Cell-Equipped Ultra-Dense Networks. 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–4.

Ultra-dense Networks are attracting significant interest due to their ability to provide the next generation 5G cellular networks with a high data rate, low delay, and seamless coverage. Several factors, such as interferences, energy constraints, and backhaul bottlenecks may limit wireless networks densification. In this paper, we study the effect of mobile node densification, access node densification, and their aggregation into virtual entities, referred to as virtual cells, on location privacy. Simulations show that the number of tracked mobile nodes might be statistically reduced up to 10 percent by implementing virtual cells. Moreover, experiments highlight that success of tracking attacks has an inverse relationship to the number of moving nodes. The present paper is a preliminary attempt to analyse the effectiveness of cell virtualization to mitigate location privacy threats in ultra-dense networks.

2019-06-10
Li, T., Ma, J., Pei, Q., Shen, Y., Sun, C..  2018.  Log-based Anomalies Detection of MANETs Routing with Reasoning and Verification. 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). :240–246.

Routing security plays an important role in Mobile Ad hoc Networks (MANETs). Despite many attempts to improve its security, the routing procedure of MANETs remains vulnerable to attacks. Existing approaches offer support for detecting attacks or debugging in different routing phases, but many of them have not considered the privacy of the nodes during the anomalies detection, which depend on the central control program or a third party to supervise the whole network. In this paper, we present an approach called LAD which uses the raw logs of routers to construct control a flow graph and find the existing communication rules in MANETs. With the reasoning rules, LAD can detect both active and passive attacks launched during the routing phase. LAD can also protect the privacy of the nodes in the verification phase with the specific Merkle hash tree. Without deploying any special nodes to assist the verification, LAD can detect multiple malicious nodes by itself. To show that our approach can be used to guarantee the security of the MANETs, we deploy our experiment in NS3 as well as the practical router environment. LAD can improve the accuracy rate from 2.28% to 29.22%. The results show that LAD performs limited time and memory usages, high detection and low false positives.

2018-06-17
Platzer, Andre.  2018.  Logical Foundations of Cyber-Physical Systems.

Cyber-physical systems (CPSs) combine cyber capabilities, such as computation or communication, with physical capabilities, such as motion or other physical processes. Cars, aircraft, and robots are prime examples, because they move physically in space in a way that is determined by discrete computerized control algorithms. Designing these algorithms is challenging due to their tight coupling with physical behavior, while it is vital that these algorithms be correct because we rely on them for safety-critical tasks.

2019-02-08
Visoottiviseth, Vasaka, Phungphat, Atit, Puttawong, Nuntapob, Chantaraumporn, Pamanut, Haga, Jason.  2018.  Lord of Secure: The Virtual Reality Game for Educating Network Security. 2018 Seventh ICT International Student Project Conference (ICT-ISPC). :1-6.

 At the present, the security on the Internet is very sensitive and important. Most of the computer science curricula in universities and institutes of higher education provides this knowledge in term of computer and network security. Therefore, students studying in the information technology area need to have some basic knowledge about the security in order to prevent the potential attacks and protect themselves from hackers or intruders. Unfortunately, the network security concept is moderately abstract when students learn in the traditional lecture-based class. In this paper, to motivate and help students to perceive better than in the traditional classroom, we propose a security game called “Lord of Secure”, which is a virtual reality (VR) game on Android for education. It is an alternative learning materials for learners to gain the knowledge about the network security effectively. The game composes of main topics of the network security such as Firewall, IDS, IPS, and Honey pot. Moreover, the game will give the players knowledge about network security through the virtual world. The game also contains several quizzes including pretest and posttest, so players will know how much they gain more knowledge about network security by comparing scores before and after playing the game.

2019-10-23
Lee, Hojoon, Song, Chihyun, Kang, Brent Byunghoon.  2018.  Lord of the X86 Rings: A Portable User Mode Privilege Separation Architecture on X86. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1441-1454.

Modern applications often involve processing of sensitive information. However, the lack of privilege separation within the user space leaves sensitive application secret such as cryptographic keys just as unprotected as a "hello world" string. Cutting-edge hardware-supported security features are being introduced. However, the features are often vendor-specific or lack compatibility with older generations of the processors. The situation leaves developers with no portable solution to incorporate protection for the sensitive application component. We propose LOTRx86, a fundamental and portable approach for user-space privilege separation. Our approach creates a more privileged user execution layer called PrivUser by harnessing the underused intermediate privilege levels on the x86 architecture. The PrivUser memory space, a set of pages within process address space that are inaccessible to user mode, is a safe place for application secrets and routines that access them. We implement the LOTRx86 ABI that exports the privcall interface to users to invoke secret handling routines in PrivUser. This way, sensitive application operations that involve the secrets are performed in a strictly controlled manner. The memory access control in our architecture is privilege-based, accessing the protected application secret only requires a change in the privilege, eliminating the need for costly remote procedure calls or change in address space. We evaluated our platform by developing a proof-of-concept LOTRx86-enabled web server that employs our architecture to securely access its private key during an SSL connection. We conducted a set of experiments including a performance measurement on the PoC on both Intel and AMD PCs, and confirmed that LOTRx86 incurs only a limited performance overhead.

2019-02-13
Orosz, P., Nagy, B., Varga, P., Gusat, M..  2018.  Low False Alarm Ratio DDoS Detection for ms-scale Threat Mitigation. 2018 14th International Conference on Network and Service Management (CNSM). :212–218.

The dynamically changing landscape of DDoS threats increases the demand for advanced security solutions. The rise of massive IoT botnets enables attackers to mount high-intensity short-duration ”volatile ephemeral” attack waves in quick succession. Therefore the standard human-in-the-loop security center paradigm is becoming obsolete. To battle the new breed of volatile DDoS threats, the intrusion detection system (IDS) needs to improve markedly, at least in reaction times and in automated response (mitigation). Designing such an IDS is a daunting task as network operators are traditionally reluctant to act - at any speed - on potentially false alarms. The primary challenge of a low reaction time detection system is maintaining a consistently low false alarm rate. This paper aims to show how a practical FPGA-based DDoS detection and mitigation system can successfully address this. Besides verifying the model and algorithms with real traffic ”in the wild”, we validate the low false alarm ratio. Accordingly, we describe a methodology for determining the false alarm ratio for each involved threat type, then we categorize the causes of false detection, and provide our measurement results. As shown here, our methods can effectively mitigate the volatile ephemeral DDoS attacks, and accordingly are usable both in human out-of-loop and on-the-loop next-generation security solutions.

2019-06-17
Sasan, Avesta, Zu, Qi, Wamg, Yanzhi, Seo, Jae-sun, Mohsenin, Tinoosh.  2018.  Low Power and Trusted Machine Learning. Proceedings of the 2018 on Great Lakes Symposium on VLSI. :515–515.

In this special discussion session on machine learning, the panel members discuss various issues related to building secure and low power neuromorphic systems. The security of neuromorphic systems may be discussed in term of the reliability of the model, trust in the model, and security of the underlying hardware. The low power aspect of neuromorphic computing systems may be discussed in terms of adaptation of new devices and technologies, the adaptation of new computational models, development of heterogeneous computing frameworks, or dedicated engines for processing neuromorphic models. This session may include discussion on the design space of such supporting hardware, exploring tradeoffs between power/energy, security, scalability, hardware area, performance, and accuracy.

2019-01-31
Xu, Ke, Li, Yu, Huang, Bo, Liu, Xiangkai, Wang, Hong, Wu, Zhuoyan, Yan, Zhanpeng, Tu, Xueying, Wu, Tongqing, Zeng, Daibing.  2018.  A Low-Power 4096x2160@30Fps H.265/HEVC Video Encoder for Smart Video Surveillance. Proceedings of the International Symposium on Low Power Electronics and Design. :38:1–38:6.

This paper presents the design and VLSI implementation of a low-power HEVC main profile encoder, which is able to process up to 4096x2160@30fps 4:2:0 encoding in real-time with five-stage pipeline architecture. A pyramid ME (Motion Estimation) engine is employed to reduce search complexity. To compensate for the video sequences with fast moving objects, GME (Global Motion Estimation) are introduced to alleviate the effect of limited search range. We also implement an alternative 5x5 search along with 3x3 to boost video quality. For intra mode decision, original pixels, instead of reconstructed ones are used to reduce pipeline stall. The encoder supports DVFS (Dynamic Voltage and Frequency Scaling) and features three operating modes, which helps to reduce power consumption by 25%. Scalable quality that trades encoding quality for power by reducing size of search range and intra prediction candidates, achieves 11.4% power reduction with 3.5% quality degradation. Furthermore, a lossless frame buffer compression is proposed which reduced DDR bandwidth by 49.1% and power consumption by 13.6%. The entire video surveillance SoC is fabricated with TSMC 28nm technology with 1.96 mm2 area. It consumes 2.88M logic gates and 117KB SRAM. The measured power consumption is 103mW at 350MHz for 4K encoding with high-quality mode. The 0.39nJ/pixel of energy efficiency of this work, which achieves 42% $\backslash$textasciitilde 97% power reduction as compared with reference designs, make it ideal for real-time low-power smart video surveillance applications.

2019-09-26
Wang, Fei, Kwon, Yonghwi, Ma, Shiqing, Zhang, Xiangyu, Xu, Dongyan.  2018.  Lprov: Practical Library-Aware Provenance Tracing. Proceedings of the 34th Annual Computer Security Applications Conference. :605-617.

With the continuing evolution of sophisticated APT attacks, provenance tracking is becoming an important technique for efficient attack investigation in enterprise networks. Most of existing provenance techniques are operating on system event auditing that discloses dependence relationships by scrutinizing syscall traces. Unfortunately, such auditing-based provenance is not able to track the causality of another important dimension in provenance, the shared libraries. Different from other data-only system entities like files and sockets, dynamic libraries are linked at runtime and may get executed, which poses new challenges in provenance tracking. For example, library provenance cannot be tracked by syscalls and mapping; whether a library function is called and how it is called within an execution context is invisible at syscall level; linking a library does not promise their execution at runtime. Addressing these challenges is critical to tracking sophisticated attacks leveraging libraries. In this paper, to facilitate fine-grained investigation inside the execution of library binaries, we develop Lprov, a novel provenance tracking system which combines library tracing and syscall tracing. Upon a syscall, Lprov identifies the library calls together with the stack which induces it so that the library execution provenance can be accurately revealed. Our evaluation shows that Lprov can precisely identify attack provenance involving libraries, including malicious library attack and library vulnerability exploitation, while syscall-based provenance tools fail to identify. It only incurs 7.0% (in geometric mean) runtime overhead and consumes 3 times less storage space of a state-of-the-art provenance tool.