Biblio

Found 377 results

Filters: First Letter Of Title is O  [Clear All Filters]
2021-12-22
Kim, Jiha, Park, Hyunhee.  2021.  OA-GAN: Overfitting Avoidance Method of GAN Oversampling Based on xAI. 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN). :394–398.
The most representative method of deep learning is data-driven learning. These methods are often data-dependent, and lack of data leads to poor learning. There is a GAN method that creates a likely image as a way to solve a problem that lacks data. The GAN determines that the discriminator is fake/real with respect to the image created so that the generator learns. However, overfitting problems when the discriminator becomes overly dependent on the learning data. In this paper, we explain overfitting problem when the discriminator decides to fake/real using xAI. Depending on the area of the described image, it is possible to limit the learning of the discriminator to avoid overfitting. By doing so, the generator can produce similar but more diverse images.
2022-03-14
Xu, Zixuan, Zhang, Jingci, Ai, Shang, Liang, Chen, Liu, Lu, Li, Yuanzhang.  2021.  Offensive and Defensive Countermeasure Technology of Return-Oriented Programming. 2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing Communications (GreenCom) and IEEE Cyber, Physical Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :224–228.
The problem of buffer overflow in the information system is not threatening, and the system's own defense mechanism can detect and terminate code injection attacks. However, as countermeasures compete with each other, advanced stack overflow attacks have emerged: Return Oriented-Programming (ROP) technology, which has become a hot spot in the field of system security research in recent years. First, this article explains the reason for the existence of this technology and the attack principle. Secondly, it systematically expounds the realization of the return-oriented programming technology at home and abroad in recent years from the common architecture platform, the research of attack load construction, and the research of variants based on ROP attacks. Finally, we summarize the paper.
2022-06-09
Zhang, QianQian, Liu, Yazhou, Sun, Quansen.  2021.  Object Classification of Remote Sensing Images Based on Optimized Projection Supervised Discrete Hashing. 2020 25th International Conference on Pattern Recognition (ICPR). :9507–9513.
Recently, with the increasing number of large-scale remote sensing images, the demand for large-scale remote sensing image object classification is growing and attracting the interest of many researchers. Hashing, because of its low memory requirements and high time efficiency, has widely solve the problem of large-scale remote sensing image. Supervised hashing methods mainly leverage the label information of remote sensing image to learn hash function, however, the similarity of the original feature space cannot be well preserved, which can not meet the accurate requirements for object classification of remote sensing image. To solve the mentioned problem, we propose a novel method named Optimized Projection Supervised Discrete Hashing(OPSDH), which jointly learns a discrete binary codes generation and optimized projection constraint model. It uses an effective optimized projection method to further constraint the supervised hash learning and generated hash codes preserve the similarity based on the data label while retaining the similarity of the original feature space. The experimental results show that OPSDH reaches improved performance compared with the existing hash learning methods and demonstrate that the proposed method is more efficient for operational applications.
2022-03-23
Jena, Prasanta Kumar, Ghosh, Subhojit, Koley, Ebha.  2021.  An Optimal PMU Placement Scheme for Detection of Malicious Attacks in Smart Grid. 2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE). :1—6.

State estimation is the core operation performed within the energy management system (EMS) of smart grid. Hence, the reliability and integrity of a smart grid relies heavily on the performance of sensor measurement dependent state estimation process. The increasing penetration of cyber control into the smart grid operations has raised severe concern for executing a secured state estimation process. The limitation with regard to monitoring large number of sensors allows an intruder to manipulate sensor information, as one of the soft targets for disrupting power system operations. Phasor measurement unit (PMU) can be adopted as an alternative to immunize the state estimation from corrupted conventional sensor measurements. However, the high installation cost of PMUs restricts its installation throughout the network. In this paper a graphical approach is proposed to identify minimum PMU placement locations, so as to detect any intrusion of malicious activity within the smart grid. The high speed synchronized PMU information ensures processing of secured set of sensor measurements to the control center. The results of PMU information based linear state estimation is compared with the conventional non-linear state estimation to detect any attack within the system. The effectiveness of the proposed scheme has been validated on IEEE 14 bus test system.

2022-08-26
Ding, Zhaohao, Yu, Kaiyuan, Guo, Jinran, Wang, Cheng, Tang, Fei.  2021.  Operational Security Assessment for Transmission System Adopting Dynamic Line Rating Mechanism. 2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). :176–181.
The widely adopted dynamic line rating (DLR) mechanism can improve the operation efficiency for industrial and commercial power systems. However, the predicted environmental parameters used in DLR bring great uncertainty to transmission line capacity estimation and may introduce system security risk if over-optimistic estimation is adopted in the operation process, which could affect the electrical safety of industrial and commercial power systems in multiple cases. Therefore, it becomes necessary to establish a system operation security assessment model to reduce the risk and provide operational guidance to enhance electrical safety. This paper aims to solve the electrical safety problems caused by the transmission line under DLR mechanism. An operation security assessment method of transmission lines considering DLR uncertainty is proposed to visualize the safety margin under the given operation strategy and optimally setting transmission line capacity while taking system safety into account. With the help of robust optimization (RO) techniques, the uncertainty is characterized and a risk-averse transmission line rating guidance can be established to determine the safety margin of line capacity for system operation. In this way, the operational security for industrial and commercial power systems can be enhanced by reducing the unsafe conditions while the operational efficiency benefit provided by DLR mechanism still exist.
2021-12-20
Khorasgani, Hamidreza Amini, Maji, Hemanta K., Wang, Mingyuan.  2021.  Optimally-secure Coin-tossing against a Byzantine Adversary. 2021 IEEE International Symposium on Information Theory (ISIT). :2858–2863.
Ben-Or and Linial (1985) introduced the full information model for coin-tossing protocols involving \$n\$ processors with unbounded computational power using a common broadcast channel for all their communications. For most adversarial settings, the characterization of the exact or asymptotically optimal protocols remains open. Furthermore, even for the settings where near-optimal asymptotic constructions are known, the exact constants or poly-logarithmic multiplicative factors involved are not entirely well-understood. This work studies \$n\$-processor coin-tossing protocols where every processor broadcasts an arbitrary-length message once. An adaptive Byzantine adversary, based on the messages broadcast so far, can corrupt \$k=1\$ processor. A bias-\$X\$ coin-tossing protocol outputs 1 with probability \$X\$; otherwise, it outputs 0 with probability (\$1-X\$). A coin-tossing protocol's insecurity is the maximum change in the output distribution (in the statistical distance) that a Byzantine adversary can cause. Our objective is to identify bias-\$X\$ coin-tossing protocols achieving near-optimal minimum insecurity for every \$Xın[0,1]\$. Lichtenstein, Linial, and Saks (1989) studied bias-\$X\$ coin-tossing protocols in this adversarial model where each party broadcasts an independent and uniformly random bit. They proved that the elegant “threshold coin-tossing protocols” are optimal for all \$n\$ and \$k\$. Furthermore, Goldwasser, Kalai, and Park (2015), Kalai, Komargodski, and Raz (2018), and Haitner and Karidi-Heller (2020) prove that \$k=\textbackslashtextbackslashmathcalO(\textbackslashtextbackslashsqrtn \textbackslashtextbackslashcdot \textbackslashtextbackslashmathsfpolylog(n)\$) corruptions suffice to fix the output of any bias-\$X\$ coin-tossing protocol. These results encompass parties who send arbitrary-length messages, and each processor has multiple turns to reveal its entire message. We use an inductive approach to constructing coin-tossing protocols using a potential function as a proxy for measuring any bias-\$X\$ coin-tossing protocol's susceptibility to attacks in our adversarial model. Our technique is inherently constructive and yields protocols that minimize the potential function. It is incidentally the case that the threshold protocols minimize the potential function, even for arbitrary-length messages. We demonstrate that these coin-tossing protocols' insecurity is a 2-approximation of the optimal protocol in our adversarial model. For any other \$Xın[0,1]\$ that threshold protocols cannot realize, we prove that an appropriate (convex) combination of the threshold protocols is a 4-approximation of the optimal protocol. Finally, these results entail new (vertex) isoperimetric inequalities for density-\$X\$ subsets of product spaces of arbitrary-size alphabets.
2022-07-12
Duan, Xiaowei, Han, Yiliang, Wang, Chao, Ni, Huanhuan.  2021.  Optimization of Encrypted Communication Length Based on Generative Adversarial Network. 2021 IEEE 4th International Conference on Big Data and Artificial Intelligence (BDAI). :165—170.
With the development of artificial intelligence and cryptography, intelligent cryptography will be the trend of encrypted communications in the future. Abadi designed an encrypted communication model based on a generative adversarial network, which can communicate securely when the adversary knows the ciphertext. The communication party and the adversary fight against each other to continuously improve their own capabilities to achieve a state of secure communication. However, this model can only have a better communication effect under the 16 bits communication length, and cannot adapt to the length of modern encrypted communication. Combine the neural network structure in DCGAN to optimize the neural network of the original model, and at the same time increase the batch normalization process, and optimize the loss function in the original model. Experiments show that under the condition of the maximum 2048-bit communication length, the decryption success rate of communication reaches about 0.97, while ensuring that the adversary’s guess error rate is about 0.95, and the training speed is greatly increased to keep it below 5000 steps, ensuring safety and efficiency Communication.
2022-04-19
Guo, Rui, Yang, Geng, Shi, Huixian, Zhang, Yinghui, Zheng, Dong.  2021.  O3-R-CP-ABE: An Efficient and Revocable Attribute-Based Encryption Scheme in the Cloud-Assisted IoMT System. IEEE Internet of Things Journal. 8:8949–8963.
With the processes of collecting, analyzing, and transmitting the data in the Internet of Things (IoT), the Internet of Medical Things (IoMT) comprises the medical equipment and applications connected to the healthcare system and offers an entity with real time, remote measurement, and analysis of healthcare data. However, the IoMT ecosystem deals with some great challenges in terms of security, such as privacy leaking, eavesdropping, unauthorized access, delayed detection of life-threatening episodes, and so forth. All these negative effects seriously impede the implementation of the IoMT ecosystem. To overcome these obstacles, this article presents an efficient, outsourced online/offline revocable ciphertext policy attribute-based encryption scheme with the aid of cloud servers and blockchains in the IoMT ecosystem. Our proposal achieves the characteristics of fine-grained access control, fast encryption, outsourced decryption, user revocation, and ciphertext verification. It is noteworthy that based on the chameleon hash function, we construct the private key of the data user with collision resistance, semantically secure, and key-exposure free to achieve revocation. To the best of our knowledge, this is the first protocol for a revocation mechanism by means of the chameleon hash function. Through formal analysis, it is proven to be secure in a selectively replayable chosen-ciphertext attack (RCCA) game. Finally, this scheme is implemented with the Java pairing-based cryptography library, and the simulation results demonstrate that it enables high efficiency and practicality, as well as strong reliability for the IoMT ecosystem.
Conference Name: IEEE Internet of Things Journal
2022-05-06
Haugdal, Hallvar, Uhlen, Kjetil, Jóhannsson, Hjörtur.  2021.  An Open Source Power System Simulator in Python for Efficient Prototyping of WAMPAC Applications. 2021 IEEE Madrid PowerTech. :1–6.
An open source software package for performing dynamic RMS simulation of small to medium-sized power systems is presented, written entirely in the Python programming language. The main objective is to facilitate fast prototyping of new wide area monitoring, control and protection applications for the future power system by enabling seamless integration with other tools available for Python in the open source community, e.g. for signal processing, artificial intelligence, communication protocols etc. The focus is thus transparency and expandability rather than computational efficiency and performance.The main purpose of this paper, besides presenting the code and some results, is to share interesting experiences with the power system community, and thus stimulate wider use and further development. Two interesting conclusions at the current stage of development are as follows:First, the simulation code is fast enough to emulate real-time simulation for small and medium-size grids with a time step of 5 ms, and allows for interactive feedback from the user during the simulation. Second, the simulation code can be uploaded to an online Python interpreter, edited, run and shared with anyone with a compatible internet browser. Based on this, we believe that the presented simulation code could be a valuable tool, both for researchers in early stages of prototyping real-time applications, and in the educational setting, for students developing intuition for concepts and phenomena through real-time interaction with a running power system model.
2021-12-20
Wang, Libin, Wang, Huanqing, Liu, Peter Xiaoping.  2021.  Observer-Based Fuzzy Adaptive Command Filtering Finite-Time Control of Stochastic Nonlinear Systems. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :1–6.
The output feedback problem of finite-time command filtering for nonlinear systems with random disturbance is addressed in this paper. This is the first time that command filtering and output feedback are integrated so that a nonlinear system with random disturbance converge rapidly in finite time. The uncertain functions and unmeasured states are estimated by the fuzzy logic system (FLS) and nonlinear state observer, respectively. Based on the adaptive framework, command filtering technology is applied to mitigate the problem of ``term explosion'' inherent in traditional methods, and error compensation mechanism is considered to improve the control performance of the system. The developed output feedback controller ensures the boundedness of all signals in the stochastic system within a finite time, and the convergence residual can converge to a small region. The validity of this scheme is well verified in a numerical example.
2022-02-09
Deng, Han, Wang, Zhechon, Zhang, Yazhen.  2021.  Overview of Privacy Protection Data Release Anonymity Technology. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :151–156.
The collection of digital information by governments, companies and individuals creates tremendous opportunities for knowledge and information-based decision-making. Driven by mutual benefit and laws and regulations, there is a need for data exchange and publication between all parties. However, data in its original form usually contains sensitive information about individuals and publishing such data would violate personal privacy. Privacy Protection Data Distribution (PPDP) provides methods and tools to release useful information while protecting data privacy. In recent years, PPDP has received extensive attention from the research community, and many solutions have been proposed for different data release scenarios. How to ensure the availability of data under the premise of protecting user privacy is the core problem to be solved in this field. This paper studies the existing achievements of privacy protection data release anonymity technology, focusing on the existing anonymity technology in three aspects of high-dimensional, high-deficiency, and complex relational data, and analyzes and summarizes them.
2022-05-06
Kalyani, Muppalla, Park, Soo-Hyun.  2021.  Ontology based routing path selection mechanism for underwater Internet of Things. 2021 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia). :1—5.
Based on the success of terrestrial Internet of Things (IoT), research has started on Underwater IoT (UIoT). The UIoT describes global network of connected underwater things that interact with water environment and communicate with terrestrial network through the underwater communication technologies. For UIoT device, it is important to choose the channel before transmission. This paper deals with UIoT communication technologies and ontology based path selection mechanism for UIoT.
2022-06-09
Fang, Shiwei, Huang, Jin, Samplawski, Colin, Ganesan, Deepak, Marlin, Benjamin, Abdelzaher, Tarek, Wigness, Maggie B..  2021.  Optimizing Intelligent Edge-clouds with Partitioning, Compression and Speculative Inference. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :892–896.
Internet of Battlefield Things (IoBTs) are well positioned to take advantage of recent technology trends that have led to the development of low-power neural accelerators and low-cost high-performance sensors. However, a key challenge that needs to be dealt with is that despite all the advancements, edge devices remain resource-constrained, thus prohibiting complex deep neural networks from deploying and deriving actionable insights from various sensors. Furthermore, deploying sophisticated sensors in a distributed manner to improve decision-making also poses an extra challenge of coordinating and exchanging data between the nodes and server. We propose an architecture that abstracts away these thorny deployment considerations from an end-user (such as a commander or warfighter). Our architecture can automatically compile and deploy the inference model into a set of distributed nodes and server while taking into consideration of the resource availability, variation, and uncertainties.
2022-01-31
Patel, Jatin, Halabi, Talal.  2021.  Optimizing the Performance of Web Applications in Mobile Cloud Computing. 2021 IEEE 6th International Conference on Smart Cloud (SmartCloud). :33—37.
Cloud computing adoption is on the rise. Many organizations have decided to shift their workload to the cloud to benefit from the scalability, resilience, and cost reduction characteristics. Mobile Cloud Computing (MCC) is an emerging computing paradigm that also provides many advantages to mobile users. Mobile devices function on wireless internet connectivity, which entails issues of limited bandwidth and network congestion. Hence, the primary focus of Web applications in MCC is on improving performance by quickly fulfilling customer's requests to improve service satisfaction. This paper investigates a new approach to caching data in these applications using Redis, an in-memory data store, to enhance Quality of Service. We highlight the two implementation approaches of fetching the data of an application either directly from the database or from the cache. Our experimental analysis shows that, based on performance metrics such as response time, throughput, latency, and number of hits, the caching approach achieves better performance by speeding up the data retrieval by up to four times. This improvement is of significant importance in mobile devices considering their limitation of network bandwidth and wireless connectivity.
2022-04-26
[Anonymous].  2021.  Oblivious Signature based on Blind Signature and Zero-Knowledge Set Membership. 2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS). :1–2.

An oblivious signature is a digital signature with some property. The oblivious signature scheme has two parties, the signer and the receiver. First, the receiver can choose one and get one of n valid signatures without knowing the signer’s private key. Second, the signer does not know which signature is chosen by the receiver. In this paper, we propose the oblivious signature which is combined with blind signature and zero-knowledge set membership. The property of blind signature makes sure that the signer does not know the message of the signature by the receiver chosen, on the other hand, the property of the zero-knowledge set membership makes sure that the message of the signature by the receiver chosen is one of the set original messages.

2022-05-12
Ma, Lele.  2021.  One Layer for All: Efficient System Security Monitoring for Edge Servers. 2021 IEEE International Performance, Computing, and Communications Conference (IPCCC). :1–8.
Edge computing promises higher bandwidth and lower latency to end-users. However, edge servers usually have limited computing resources and are geographically distributed over the edge. This imposes new challenges for efficient system monitoring and control of edge servers.In this paper, we propose EdgeVMI, a framework to monitor and control services running on edge servers with lightweight virtual machine introspection(VMI). The key of our technique is to run the monitor in a lightweight virtual machine which can leverage hardware events for monitoring memory read and writes. In addition, the small binary size and memory footprints of the monitor could reduce the start/stop time of service, the runtime overhead, as well as the deployment efforts.Inspired by unikernels, we build our monitor with only the necessary system modules, libraries, and functionalities of a specific monitor task. To reduce the security risk of the monitoring behavior, we separate the monitor into two isolated modules: one acts as a sensor to collect security information and another acts as an actuator to conduct control commands. Our evaluation shows the effectiveness and the efficiency of the monitoring system, with an average performance overhead of 2.7%.
2021-01-15
Khalid, H., Woo, S. S..  2020.  OC-FakeDect: Classifying Deepfakes Using One-class Variational Autoencoder. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). :2794—2803.
An image forgery method called Deepfakes can cause security and privacy issues by changing the identity of a person in a photo through the replacement of his/her face with a computer-generated image or another person's face. Therefore, a new challenge of detecting Deepfakes arises to protect individuals from potential misuses. Many researchers have proposed various binary-classification based detection approaches to detect deepfakes. However, binary-classification based methods generally require a large amount of both real and fake face images for training, and it is challenging to collect sufficient fake images data in advance. Besides, when new deepfakes generation methods are introduced, little deepfakes data will be available, and the detection performance may be mediocre. To overcome these data scarcity limitations, we formulate deepfakes detection as a one-class anomaly detection problem. We propose OC-FakeDect, which uses a one-class Variational Autoencoder (VAE) to train only on real face images and detects non-real images such as deepfakes by treating them as anomalies. Our preliminary result shows that our one class-based approach can be promising when detecting Deepfakes, achieving a 97.5% accuracy on the NeuralTextures data of the well-known FaceForensics++ benchmark dataset without using any fake images for the training process.
2021-09-30
Titouna, Chafiq, Na\"ıt-Abdesselam, Farid, Moungla, Hassine.  2020.  An Online Anomaly Detection Approach For Unmanned Aerial Vehicles. 2020 International Wireless Communications and Mobile Computing (IWCMC). :469–474.
A non-predicted and transient malfunctioning of one or multiple unmanned aerial vehicles (UAVs) is something that may happen over a course of their deployment. Therefore, it is very important to have means to detect these events and take actions for ensuring a high level of reliability, security, and safety of the flight for the predefined mission. In this research, we propose algorithms aiming at the detection and isolation of any faulty UAV so that the performance of the UAVs application is kept at its highest level. To this end, we propose the use of Kullback-Leiler Divergence (KLD) and Artificial Neural Network (ANN) to build algorithms that detect and isolate any faulty UAV. The proposed methods are declined in these two directions: (1) we compute a difference between the internal and external data, use KLD to compute dissimilarities, and detect the UAV that transmits erroneous measurements. (2) Then, we identify the faulty UAV using an ANN model to classify the sensed data using the internal sensed data. The proposed approaches are validated using a real dataset, provided by the Air Lab Failure and Anomaly (ALFA) for UAV fault detection research, and show promising performance.
2021-12-02
Piatkowska, Ewa, Gavriluta, Catalin, Smith, Paul, Andrén, Filip Pröstl.  2020.  Online Reasoning about the Root Causes of Software Rollout Failures in the Smart Grid. 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–7.
An essential ingredient of the smart grid is software-based services. Increasingly, software is used to support control strategies and services that are critical to the grid's operation. Therefore, its correct operation is essential. For various reasons, software and its configuration needs to be updated. This update process represents a significant overhead for smart grid operators and failures can result in financial losses and grid instabilities. In this paper, we present a framework for determining the root causes of software rollout failures in the smart grid. It uses distributed sensors that indicate potential issues, such as anomalous grid states and cyber-attacks, and a causal inference engine based on a formalism called evidential networks. The aim of the framework is to support an adaptive approach to software rollouts, ensuring that a campaign completes in a timely and secure manner. The framework is evaluated for a software rollout use-case in a low voltage distribution grid. Experimental results indicate it can successfully discriminate between different root causes of failure, supporting an adaptive rollout strategy.
2021-02-15
Huang, K..  2020.  Online/Offline Revocable Multi-Authority Attribute-Based Encryption for Edge Computing. 2020 12th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :563–568.
Multi-authority attribute-based encryption (MA-ABE) is a promising technique to achieve fine-grained access control over encrypted data in cross domain applications. However, the dynamic change of users' access privilege brings security problems, and the heavy encryption computational cost is issue for resource-constrained users in IoT. Moreover, the invalid or illegal ciphertext will waste system resources. We propose a large universe MA-CP-ABE scheme with revocation and online/offline encryption. In our scheme, an efficient revocation mechanism is designed to change users' access privilege timely. Most of the encryption operations have been executed in the user's initialization phase by adding reusable ciphertext pool besides splitting the encryption algorithm to online encryption and offline encryption. Moreover, the scheme supports ciphertext verification and only valid ciphertext can be stored and transmitted. The proposed scheme is proven statically secure under the q-DPBDHE2 assumption. The performance analysis results indicate that the proposed scheme is efficient and suitable for resource constrained users in edge computing for IoT.
2022-02-10
Shang, Qi.  2020.  ONU Authentication Method Based on POTS Key Matching. 2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :41–43.
A new ONU authentication method based on POTS key matching is proposed, which makes use of ONU's own FXS resources and connects with a pots phone by dialing the corresponding LOID service key and authentication code that will be sent to ONU. The key combined with LOID service key and authentication code received by ONU will be filtered and then the LOID authentication code is obtained, which is put to match with DigitMap preset into the database of ONU. The LOID authentication code will be transmitted to OLT so as to achieve the purpose of ONU authentication and authorization if the match result is successful.
2021-05-05
Osaretin, Charles Aimiuwu, Zamanlou, Mohammad, Iqbal, M. Tariq, Butt, Stephen.  2020.  Open Source IoT-Based SCADA System for Remote Oil Facilities Using Node-RED and Arduino Microcontrollers. 2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0571—0575.
An open source and low-cost Supervisory Control and Data Acquisition System based on Node-RED and Arduino microcontrollers is presented in this paper. The system is designed for monitoring, supervision, and remotely controlling motors and sensors deployed for oil and gas facilities. The Internet of Things (IoT) based SCADA system consists of a host computer on which a server is deployed using the Node-RED programming tool and two terminal units connected to it: Arduino Uno and Arduino Mega. The Arduino Uno collects and communicates the data acquired from the temperature, flowrate, and water level sensors to the Node-Red on the computer through the serial port. It also uses a local liquid crystal display (LCD) to display the temperature. Node-RED on the computer retrieves the data from the voltage, current, rotary, accelerometer, and distance sensors through the Arduino Mega. Also, a web-based graphical user interface (GUI) is created using Node-RED and hosted on the local server for parsing the collected data. Finally, an HTTP basic access authentication is implemented using Nginx to control the clients' access from the Internet to the local server and to enhance its security and reliability.
2021-02-15
Rana, M. M., Mehedie, A. M. Alam, Abdelhadi, A..  2020.  Optimal Image Watermark Technique Using Singular Value Decomposition with PCA. 2020 22nd International Conference on Advanced Communication Technology (ICACT). :342–347.
Image watermarking is very important phenomenon in modern society where intellectual property right of information is necessary. Considering this impending problem, there are many image watermarking methods exist in the literature each of having some key advantages and disadvantages. After summarising state-of-the-art literature survey, an optimum digital watermark technique using singular value decomposition with principle component analysis (PCA) is proposed and verified. Basically, the host image is compressed using PCA which reduces multi-dimensional data to effective low-dimensional information. In this scheme, the watermark is embedded using the discrete wavelet transformation-singular value decomposition approach. Simulation results show that the proposed method improves the system performance compared with the existing method in terms of the watermark embedding, and extraction time. Therefore, this work is valuable for image watermarking in modern life such as tracing copyright infringements and banknote authentication.
2021-08-11
Chen, Juntao, Touati, Corinne, Zhu, Quanyan.  2020.  Optimal Secure Two-Layer IoT Network Design. IEEE Transactions on Control of Network Systems. 7:398–409.
With the remarkable growth of the Internet and communication technologies over the past few decades, Internet of Things (IoTs) is enabling the ubiquitous connectivity of heterogeneous physical devices with software, sensors, and actuators. IoT networks are naturally two layers with the cloud and cellular networks coexisting with the underlaid device-to-device communications. The connectivity of IoTs plays an important role in information dissemination for mission-critical and civilian applications. However, IoT communication networks are vulnerable to cyber attacks including the denial-of-service and jamming attacks, resulting in link removals in the IoT network. In this paper, we develop a heterogeneous IoT network design framework in which a network designer can add links to provide additional communication paths between two nodes or secure links against attacks by investing resources. By anticipating the strategic cyber attacks, we characterize the optimal design of the secure IoT network by first providing a lower bound on the number of links a secure network requires for a given budget of protected links, and then developing a method to construct networks that satisfy the heterogeneous network design specifications. Therefore, each layer of the designed heterogeneous IoT network is resistant to a predefined level of malicious attacks with minimum resources. Finally, we provide case studies on the Internet of Battlefield Things to corroborate and illustrate our obtained results.
2021-03-22
shree, S. R., Chelvan, A. Chilambu, Rajesh, M..  2020.  Optimization of Secret Key using cuckoo Search Algorithm for ensuring data integrity in TPA. 2020 International Conference on Computer Communication and Informatics (ICCCI). :1–5.
Optimization plays an important role in many problems that expect the accurate output. Security of the data stored in remote servers purely based on secret key which is used for encryption and decryption purpose. Many secret key generation algorithms such as RSA, AES are available to generate the key. The key generated by such algorithms are need to be optimized to provide more security to your data from unauthorized users as well as from the third party auditors(TPA) who is going to verify our data for integrity purpose. In this paper a method to optimize the secret key by using cuckoo search algorithm (CSA) is proposed.