Biblio

Found 19604 results

2020-07-16
Lingasubramanian, Karthikeyan, Kumar, Ranveer, Gunti, Nagendra Babu, Morris, Thomas.  2018.  Study of hardware trojans based security vulnerabilities in cyber physical systems. 2018 IEEE International Conference on Consumer Electronics (ICCE). :1—6.

The dependability of Cyber Physical Systems (CPS) solely lies in the secure and reliable functionality of their backbone, the computing platform. Security of this platform is not only threatened by the vulnerabilities in the software peripherals, but also by the vulnerabilities in the hardware internals. Such threats can arise from malicious modifications to the integrated circuits (IC) based computing hardware, which can disable the system, leak information or produce malfunctions. Such modifications to computing hardware are made possible by the globalization of the IC industry, where a computing chip can be manufactured anywhere in the world. In the complex computing environment of CPS such modifications can be stealthier and undetectable. Under such circumstances, design of these malicious modifications, and eventually their detection, will be tied to the functionality and operation of the CPS. So it is imperative to address such threats by incorporating security awareness in the computing hardware design in a comprehensive manner taking the entire system into consideration. In this paper, we present a study in the influence of hardware Trojans on closed-loop systems, which form the basis of CPS, and establish threat models. Using these models, we perform a case study on a critical CPS application, gas pipeline based SCADA system. Through this process, we establish a completely virtual simulation platform along with a hardware-in-the-loop based simulation platform for implementation and testing.

2019-05-01
Ando, Ruo.  2018.  Automated Reduction of Attack Surface Using Call Graph Enumeration. Proceedings of the 2018 2Nd International Conference on Management Engineering, Software Engineering and Service Sciences. :118-121.

There have been many research efforts on detecting vulnerability such as model checking and formal method. However, according to Rice's theorem, checking whether a program contains vulnerable code by static checking is undecidable in general. In this paper, we propose a method of attack surface reduction using enumeration of call graph. Proposal system is divided into two steps: enumerating edge E[Function Fi, Function Fi+1] and constructing call graph by recursive search of [E1, E2, En]. Proposed method enables us to find the sum of paths of which leaf node is vulnerable function VF. Also, root node RF of call graph is part of program which is open to attacker. Therefore, call graph [VF, RF] can be eliminated according the situation where the program is running. We apply proposal method to the real programs (Xen) and extracts the attack surface of CVE-2013-4371. These vulnerabilities are classified into two class: use-after-free and assertion failure. Also, numerical result is shown in searching attack surface of Xen with different search depth of constructing call graph.

2019-02-08
Yang, Chun, Wen, Yu, Guo, Jianbin, Song, Haitao, Li, Linfeng, Che, Haoyang, Meng, Dan.  2018.  A Convolutional Neural Network Based Classifier for Uncompressed Malware Samples. Proceedings of the 1st Workshop on Security-Oriented Designs of Computer Architectures and Processors. :15-17.

This paper proposes a deep learning based method for efficient malware classification. Specially, we convert the malware classification problem into the image classification problem, which can be addressed through leveraging convolutional neural networks (CNNs). For many malware families, the images belonging to the same family have similar contours and textures, so we convert the Binary files of malware samples to uncompressed gray-scale images which possess complete information of the original malware without artificial feature extraction. We then design classifier based on Tensorflow framework of Google by combining the deep learning (DL) and malware detection technology. Experimental results show that the uncompressed gray-scale images of the malware are relatively easy to distinguish and the CNN based classifier can achieve a high success rate of 98.2%

2019-05-01
Chen, Ming-Hung, Ciou, Jyun-Yan, Chung, I-Hsin, Chou, Cheng-Fu.  2018.  FlexProtect: A SDN-Based DDoS Attack Protection Architecture for Multi-Tenant Data Centers. Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region. :202-209.

With the recent advances in software-defined networking (SDN), the multi-tenant data centers provide more efficient and flexible cloud platform to their subscribers. However, as the number, scale, and diversity of distributed denial-of-service (DDoS) attack is dramatically escalated in recent years, the availability of those platforms is still under risk. We note that the state-of-art DDoS protection architectures did not fully utilize the potential of SDN and network function virtualization (NFV) to mitigate the impact of attack traffic on data center network. Therefore, in this paper, we exploit the flexibility of SDN and NFV to propose FlexProtect, a flexible distributed DDoS protection architecture for multi-tenant data centers. In FlexProtect, the detection virtual network functions (VNFs) are placed near the service provider and the defense VNFs are placed near the edge routers for effectively detection and avoid internal bandwidth consumption, respectively. Based on the architecture, we then propose FP-SYN, an anti-spoofing SYN flood protection mechanism. The emulation and simulation results with real-world data demonstrates that, compared with the traditional approach, the proposed architecture can significantly reduce 46% of the additional routing path and save 60% internal bandwidth consumption. Moreover, the proposed detection mechanism for anti-spoofing can achieve 98% accuracy.

2018-11-19
Hong, Geng, Yang, Zhemin, Yang, Sen, Zhang, Lei, Nan, Yuhong, Zhang, Zhibo, Yang, Min, Zhang, Yuan, Qian, Zhiyun, Duan, Haixin.  2018.  How You Get Shot in the Back: A Systematical Study About Cryptojacking in the Real World. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1701–1713.

As a new mechanism to monetize web content, cryptocurrency mining is becoming increasingly popular. The idea is simple: a webpage delivers extra workload (JavaScript) that consumes computational resources on the client machine to solve cryptographic puzzles, typically without notifying users or having explicit user consent. This new mechanism, often heavily abused and thus considered a threat termed "cryptojacking", is estimated to affect over 10 million web users every month; however, only a few anecdotal reports exist so far and little is known about its severeness, infrastructure, and technical characteristics behind the scene. This is likely due to the lack of effective approaches to detect cryptojacking at a large-scale (e.g., VirusTotal). In this paper, we take a first step towards an in-depth study over cryptojacking. By leveraging a set of inherent characteristics of cryptojacking scripts, we build CMTracker, a behavior-based detector with two runtime profilers for automatically tracking Cryptocurrency Mining scripts and their related domains. Surprisingly, our approach successfully discovered 2,770 unique cryptojacking samples from 853,936 popular web pages, including 868 among top 100K in Alexa list. Leveraging these samples, we gain a more comprehensive picture of the cryptojacking attacks, including their impact, distribution mechanisms, obfuscation, and attempts to evade detection. For instance, a diverse set of organizations benefit from cryptojacking based on the unique wallet ids. In addition, to stay under the radar, they frequently update their attack domains (fastflux) on the order of days. Many attackers also apply evasion techniques, including limiting the CPU usage, obfuscating the code, etc.

2019-01-31
Xue, Bai, Lu, Liu, Sikang, Hu, Yuanzhang, Li.  2018.  An Isolated Data Encryption Experiment Method by Utilizing Baseband Processors. Proceedings of the 2018 2Nd International Conference on Management Engineering, Software Engineering and Service Sciences. :176–181.

With the rapid development of Android systems and the growing of Android market, Android system has become a focus of developers and users. MTK6795 is System-on-a-chip (SoC), which is specially designed by MediaTek for high-end smart phones. It integrates the application processor and the baseband processor in just one chip. In this paper, a new encryption method based on the baseband processor of MT6795 SoC is proposed and successfully applied on one Android-based smart phone to protect user data. In this method, the encryption algorithm and private user data are isolated into two processors, which improves the security of users' private data.

2018-11-19
Konoth, Radhesh Krishnan, Vineti, Emanuele, Moonsamy, Veelasha, Lindorfer, Martina, Kruegel, Christopher, Bos, Herbert, Vigna, Giovanni.  2018.  MineSweeper: An In-Depth Look into Drive-by Cryptocurrency Mining and Its Defense. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1714–1730.

A wave of alternative coins that can be effectively mined without specialized hardware, and a surge in cryptocurrencies' market value has led to the development of cryptocurrency mining ( cryptomining ) services, such as Coinhive, which can be easily integrated into websites to monetize the computational power of their visitors. While legitimate website operators are exploring these services as an alternative to advertisements, they have also drawn the attention of cybercriminals: drive-by mining (also known as cryptojacking ) is a new web-based attack, in which an infected website secretly executes JavaScript code and/or a WebAssembly module in the user's browser to mine cryptocurrencies without her consent. In this paper, we perform a comprehensive analysis on Alexa's Top 1 Million websites to shed light on the prevalence and profitability of this attack. We study the websites affected by drive-by mining to understand the techniques being used to evade detection, and the latest web technologies being exploited to efficiently mine cryptocurrency. As a result of our study, which covers 28 Coinhive-like services that are widely being used by drive-by mining websites, we identified 20 active cryptomining campaigns. Motivated by our findings, we investigate possible countermeasures against this type of attack. We discuss how current blacklisting approaches and heuristics based on CPU usage are insufficient, and present MineSweeper, a novel detection technique that is based on the intrinsic characteristics of cryptomining code, and, thus, is resilient to obfuscation. Our approach could be integrated into browsers to warn users about silent cryptomining when visiting websites that do not ask for their consent.

2019-02-08
Islam, Mohammad A., Ren, Shaolei.  2018.  Ohm's Law in Data Centers: A Voltage Side Channel for Timing Power Attacks. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :146-162.

Maliciously-injected power load, a.k.a. power attack, has recently surfaced as a new egregious attack vector for dangerously compromising the data center availability. This paper focuses on the emerging threat of power attacks in a multi-tenant colocation data center, an important type of data center where multiple tenants house their own servers and share the power distribution system. Concretely, we discover a novel physical side channel –- a voltage side channel –- which leaks the benign tenants' power usage information at runtime and helps an attacker precisely time its power attacks. The key idea we exploit is that, due to the Ohm's Law, the high-frequency switching operation (40\textasciitilde100kHz) of the power factor correction circuit universally built in today's server power supply units creates voltage ripples in the data center power lines. Importantly, without overlapping the grid voltage in the frequency domain, the voltage ripple signals can be easily sensed by the attacker to track the benign tenants' runtime power usage and precisely time its power attacks. We evaluate the timing accuracy of the voltage side channel in a real data center prototype, demonstrating that the attacker can extract benign tenants' power pattern with a great accuracy (correlation coefficient = 0.90+) and utilize 64% of all the attack opportunities without launching attacks randomly or consecutively. Finally, we highlight a few possible defense strategies and extend our study to more complex three-phase power distribution systems used in large multi-tenant data centers.

Casola, Valentina, De Benedictis, Alessandra, Rak, Massimiliano, Villano, Umberto.  2018.  A Security SLA-Driven Moving Target Defense Framework to Secure Cloud Applications. Proceedings of the 5th ACM Workshop on Moving Target Defense. :48-56.

The large adoption of cloud services in many business domains dramatically increases the need for effective solutions to improve the security of deployed services. The adoption of Security Service Level Agreements (Security SLAs) represents an effective solution to state formally the security guarantees that a cloud service is able to provide. Even if security policies declared by the service provider are properly implemented before the service is deployed and launched, the actual security level tends to degrade over time, due to the knowledge on the exposed attack surface that the attackers are progressively able to gain. In this paper, we present a Security SLA-driven MTD framework that allows MTD strategies to be applied to a cloud application by automatically switching among different admissible application configurations, in order to confuse the attackers and nullify their reconnaissance effort, while preserving the application Security SLA across reconfigurations.

2019-01-21
Martinek, Radek, Kahankova, Radana, Bilik, Petr, Nedoma, Jan, Fajkus, Marcel, Blaha, Petr.  2018.  Speech Quality Assessment Based on Virtual Instrumentation. Proceedings of the 10th International Conference on Computer Modeling and Simulation. :49–53.

This paper introduces a program for objective and subjective evaluation of speech quality. Using this environment, a lot of speech recordings and various indoor and outdoor noises were processed. As a subjective speech evaluation method, the Dynamic time warping (DTW) method was selected, with PARCOR coefficients being chosen as symptom vectors. For the filtration of the noise in the recording, adaptive filtering based on LMS and RLS algorithms was used and the performance of the adaptive filtering was assessed. Similarity ranged from 70% to 95% for both algorithms. In terms of signal to noise ratio, the RLS algorithm ranged from 36 dB to 42 dB, while the LMS algorithm only varied from 20 dB to 29 dB.

2019-02-22
McKnight, Christopher, Goldberg, Ian.  2018.  Style Counsel: Seeing the (Random) Forest for the Trees in Adversarial Code Stylometry. Proceedings of the 2018 Workshop on Privacy in the Electronic Society. :138-142.

The results of recent experiments have suggested that code stylometry can successfully identify the author of short programs from among hundreds of candidates with up to 98% precision. This potential ability to discern the programmer of a code sample from a large group of possible authors could have concerning consequences for the open-source community at large, particularly those contributors that may wish to remain anonymous. Recent international events have suggested the developers of certain anti-censorship and anti-surveillance tools are being targeted by their governments and forced to delete their repositories or face prosecution. In light of this threat to the freedom and privacy of individual programmers around the world, we devised a tool, Style Counsel, to aid programmers in obfuscating their inherent style and imitating another, overt, author's style in order to protect their anonymity from this forensic technique. Our system utilizes the implicit rules encoded in the decision points of a random forest ensemble in order to derive a set of recommendations to present to the user detailing how to achieve this obfuscation and mimicry attack.

2019-03-22
Teoh, T. T., Chiew, G., Franco, E. J., Ng, P. C., Benjamin, M. P., Goh, Y. J..  2018.  Anomaly Detection in Cyber Security Attacks on Networks Using MLP Deep Learning. 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE). :1-5.

Malicious traffic has garnered more attention in recent years, owing to the rapid growth of information technology in today's world. In 2007 alone, an estimated loss of 13 billion dollars was made from malware attacks. Malware data in today's context is massive. To understand such information using primitive methods would be a tedious task. In this publication we demonstrate some of the most advanced deep learning techniques available, multilayer perceptron (MLP) and J48 (also known as C4.5 or ID3) on our selected dataset, Advanced Security Network Metrics & Non-Payload-Based Obfuscations (ASNM-NPBO) to show that the answer to managing cyber security threats lie in the fore-mentioned methodologies.

2019-02-13
Joshi, M., Joshi, K., Finin, T..  2018.  Attribute Based Encryption for Secure Access to Cloud Based EHR Systems. 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). :932–935.
Medical organizations find it challenging to adopt cloud-based electronic medical records services, due to the risk of data breaches and the resulting compromise of patient data. Existing authorization models follow a patient centric approach for EHR management where the responsibility of authorizing data access is handled at the patients' end. This however creates a significant overhead for the patient who has to authorize every access of their health record. This is not practical given the multiple personnel involved in providing care and that at times the patient may not be in a state to provide this authorization. Hence there is a need of developing a proper authorization delegation mechanism for safe, secure and easy cloud-based EHR management. We have developed a novel, centralized, attribute based authorization mechanism that uses Attribute Based Encryption (ABE) and allows for delegated secure access of patient records. This mechanism transfers the service management overhead from the patient to the medical organization and allows easy delegation of cloud-based EHR's access authority to the medical providers. In this paper, we describe this novel ABE approach as well as the prototype system that we have created to illustrate it.
2019-11-12
Dreier, Jannik, Hirschi, Lucca, Radomirovic, Sasa, Sasse, Ralf.  2018.  Automated Unbounded Verification of Stateful Cryptographic Protocols with Exclusive OR. 2018 IEEE 31st Computer Security Foundations Symposium (CSF). :359-373.

Exclusive-or (XOR) operations are common in cryptographic protocols, in particular in RFID protocols and electronic payment protocols. Although there are numerous applications, due to the inherent complexity of faithful models of XOR, there is only limited tool support for the verification of cryptographic protocols using XOR. The Tamarin prover is a state-of-the-art verification tool for cryptographic protocols in the symbolic model. In this paper, we improve the underlying theory and the tool to deal with an equational theory modeling XOR operations. The XOR theory can be freely combined with all equational theories previously supported, including user-defined equational theories. This makes Tamarin the first tool to support simultaneously this large set of equational theories, protocols with global mutable state, an unbounded number of sessions, and complex security properties including observational equivalence. We demonstrate the effectiveness of our approach by analyzing several protocols that rely on XOR, in particular multiple RFID-protocols, where we can identify attacks as well as provide proofs.

2020-11-09
Bose, S., Raikwar, M., Mukhopadhyay, D., Chattopadhyay, A., Lam, K..  2018.  BLIC: A Blockchain Protocol for Manufacturing and Supply Chain Management of ICS. 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :1326–1335.
Blockchain technology has brought a huge paradigm shift in multiple industries, by integrating distributed ledger, smart contracts and consensus protocol under the same roof. Notable applications of blockchain include cryptocurrencies and large-scale multi-party transaction management systems. The latter fits very well into the domain of manufacturing and supply chain management for Integrated Circuits (IC), which, despite several advanced technologies, is vulnerable to malicious practices, such as overproduction, IP piracy and deleterious design modification to gain unfair advantages. To combat these threats, researchers have proposed several ideas like hardware metering, design obfuscation, split manufacturing and watermarking. In this paper, we show, how these issues can be complementarily dealt with using blockchain technology coupled with identity-based encryption and physical unclonable functions, for improved resilience against certain adversarial motives. As part of our proposed blockchain protocol, titled `BLIC', we propose an authentication mechanism to secure both active and passive IC transactions, and a composite consensus protocol designed for IC supply chains. We also present studies on the security, scalability, privacy and anonymity of the BLIC protocol.
2019-04-01
Urien, P..  2018.  Blockchain IoT (BIoT): A New Direction for Solving Internet of Things Security and Trust Issues. 2018 3rd Cloudification of the Internet of Things (CIoT). :1–4.

The Blockchain is an emerging paradigm that could solve security and trust issues for Internet of Things (IoT) platforms. We recently introduced in an IETF draft (“Blockchain Transaction Protocol for Constraint Nodes”) the BIoT paradigm, whose main idea is to insert sensor data in blockchain transactions. Because objects are not logically connected to blockchain platforms, controller entities forward all information needed for transaction forgery. Never less in order to generate cryptographic signatures, object needs some trusted computing resources. In previous papers we proposed the Four-Quater Architecture integrating general purpose unit (GPU), radio SoC, sensors/actuators and secure elements including TLS/DTLS stacks. These secure microcontrollers also manage crypto libraries required for blockchain operation. The BIoT concept has four main benefits: publication/duplication of sensors data in public and distributed ledgers, time stamping by the blockchain infrastructure, data authentication, and non repudiation.

2020-06-01
Tang, Yuzhe, Zou, Qiwu, Chen, Ju, Li, Kai, Kamhoua, Charles A., Kwiat, Kevin, Njilla, Laurent.  2018.  ChainFS: Blockchain-Secured Cloud Storage. 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). :987–990.
This work presents ChainFS, a middleware system that secures cloud storage services using a minimally trusted Blockchain. ChainFS hardens the cloud-storage security against forking attacks. The ChainFS middleware exposes a file-system interface to end users. Internally, ChainFS stores data files in the cloud and exports minimal and necessary functionalities to the Blockchain for key distribution and file operation logging. We implement the ChainFS system on Ethereum and S3FS and closely integrate it with FUSE clients and Amazon S3 cloud storage. We measure the system performance and demonstrate low overhead.
2019-03-04
Aborisade, O., Anwar, M..  2018.  Classification for Authorship of Tweets by Comparing Logistic Regression and Naive Bayes Classifiers. 2018 IEEE International Conference on Information Reuse and Integration (IRI). :269–276.

At a time when all it takes to open a Twitter account is a mobile phone, the act of authenticating information encountered on social media becomes very complex, especially when we lack measures to verify digital identities in the first place. Because the platform supports anonymity, fake news generated by dubious sources have been observed to travel much faster and farther than real news. Hence, we need valid measures to identify authors of misinformation to avert these consequences. Researchers propose different authorship attribution techniques to approach this kind of problem. However, because tweets are made up of only 280 characters, finding a suitable authorship attribution technique is a challenge. This research aims to classify authors of tweets by comparing machine learning methods like logistic regression and naive Bayes. The processes of this application are fetching of tweets, pre-processing, feature extraction, and developing a machine learning model for classification. This paper illustrates the text classification for authorship process using machine learning techniques. In total, there were 46,895 tweets used as both training and testing data, and unique features specific to Twitter were extracted. Several steps were done in the pre-processing phase, including removal of short texts, removal of stop-words and punctuations, tokenizing and stemming of texts as well. This approach transforms the pre-processed data into a set of feature vector in Python. Logistic regression and naive Bayes algorithms were applied to the set of feature vectors for the training and testing of the classifier. The logistic regression based classifier gave the highest accuracy of 91.1% compared to the naive Bayes classifier with 89.8%.

2019-02-21
Aranha, Claus, Junior, Jair Pereira, Kanoh, Hitoshi.  2018.  Comparative study on discrete SI approaches to the graph coloring problem. :81–82.

The Graph Coloring Problem is an important benchmark problem for decision and discrete optimization problems. In this work, we perform a comparative experimental study of four algorithms based on Swarm Intelligence for the 3-Graph Coloring Problem: Particle Swarm Optimization (PSO), Artificial Bee Colonies (ABC), Cuckoo Search (CS) and FireFly Algorithm (FFA). For each algorithm, we test parameter settings published in the literature, as well as parameters found by an automated tuning methodology (irace). This comparison may shed some light at the strengths and weaknesses of each algorithm, as well as their dependence on parameter values.

2020-11-09
Ankam, D., Bouguila, N..  2018.  Compositional Data Analysis with PLS-DA and Security Applications. 2018 IEEE International Conference on Information Reuse and Integration (IRI). :338–345.
In Compositional data, the relative proportions of the components contain important relevant information. In such case, Euclidian distance fails to capture variation when considered within data science models and approaches such as partial least squares discriminant analysis (PLS-DA). Indeed, the Euclidean distance assumes implicitly that the data is normally distributed which is not the case of compositional vectors. Aitchison transformation has been considered as a standard in compositional data analysis. In this paper, we consider two other transformation methods, Isometric log ratio (ILR) transformation and data-based power (alpha) transformation, before feeding the data to PLS-DA algorithm for classification [1]. In order to investigate the merits of both methods, we apply them in two challenging information system security applications namely spam filtering and intrusion detection.
2019-11-12
Zhang, Xian, Ben, Kerong, Zeng, Jie.  2018.  Cross-Entropy: A New Metric for Software Defect Prediction. 2018 IEEE International Conference on Software Quality, Reliability and Security (QRS). :111-122.

Defect prediction is an active topic in software quality assurance, which can help developers find potential bugs and make better use of resources. To improve prediction performance, this paper introduces cross-entropy, one common measure for natural language, as a new code metric into defect prediction tasks and proposes a framework called DefectLearner for this process. We first build a recurrent neural network language model to learn regularities in source code from software repository. Based on the trained model, the cross-entropy of each component can be calculated. To evaluate the discrimination for defect-proneness, cross-entropy is compared with 20 widely used metrics on 12 open-source projects. The experimental results show that cross-entropy metric is more discriminative than 50% of the traditional metrics. Besides, we combine cross-entropy with traditional metric suites together for accurate defect prediction. With cross-entropy added, the performance of prediction models is improved by an average of 2.8% in F1-score.

2019-02-14
Nateghi, S., Shtessel, Y., Barbot, J., Zheng, G., Yu, L..  2018.  Cyber-Attack Reconstruction via Sliding Mode Differentiation and Sparse Recovery Algorithm: Electrical Power Networks Application. 2018 15th International Workshop on Variable Structure Systems (VSS). :285-290.

In this work, the unknown cyber-attacks on cyber-physical systems are reconstructed using sliding mode differentiation techniques in concert with the sparse recovery algorithm, when only several unknown attacks out of a long list of possible attacks are considered non-zero. The approach is applied to a model of the electric power system, and finally, the efficacy of the proposed techniques is illustrated via simulations of a real electric power system.

2020-07-30
Shey, James, Karimi, Naghmeh, Robucci, Ryan, Patel, Chintan.  2018.  Design-Based Fingerprinting Using Side-Channel Power Analysis for Protection Against IC Piracy. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :614—619.

Intellectual property (IP) and integrated circuit (IC) piracy are of increasing concern to IP/IC providers because of the globalization of IC design flow and supply chains. Such globalization is driven by the cost associated with the design, fabrication, and testing of integrated circuits and allows avenues for piracy. To protect the designs against IC piracy, we propose a fingerprinting scheme based on side-channel power analysis and machine learning methods. The proposed method distinguishes the ICs which realize a modified netlist, yet same functionality. Our method doesn't imply any hardware overhead. We specifically focus on the ability to detect minimal design variations, as quantified by the number of logic gates changed. Accuracy of the proposed scheme is greater than 96 percent, and typically 99 percent in detecting one or more gate-level netlist changes. Additionally, the effect of temperature has been investigated as part of this work. Results depict 95.4 percent accuracy in detecting the exact number of gate changes when data and classifier use the same temperature, while training with different temperatures results in 33.6 percent accuracy. This shows the effectiveness of building temperature-dependent classifiers from simulations at known operating temperatures.

2019-03-25
Li, Y., Guan, Z., Xu, C..  2018.  Digital Image Self Restoration Based on Information Hiding. 2018 37th Chinese Control Conference (CCC). :4368–4372.
With the rapid development of computer networks, multimedia information is widely used, and the security of digital media has drawn much attention. The revised photo as a forensic evidence will distort the truth of the case badly tampered pictures on the social network can have a negative impact on the parties as well. In order to ensure the authenticity and integrity of digital media, self-recovery of digital images based on information hiding is studied in this paper. Jarvis half-tone change is used to compress the digital image and obtain the backup data, and then spread the backup data to generate the reference data. Hash algorithm aims at generating hash data by calling reference data and original data. Reference data and hash data together as a digital watermark scattered embedded in the digital image of the low-effective bits. When the image is maliciously tampered with, the hash bit is used to detect and locate the tampered area, and the image self-recovery is performed by extracting the reference data hidden in the whole image. In this paper, a thorough rebuild quality assessment of self-healing images is performed and better performance than the traditional DCT(Discrete Cosine Transform)quantization truncation approach is achieved. Regardless of the quality of the tampered content, a reference authentication system designed according to the principles presented in this paper allows higher-quality reconstruction to recover the original image with good quality even when the large area of the image is tampered.
2019-01-16
Uddin, M. Y. S., Venkatasubramanian, N..  2018.  Edge Caching for Enriched Notifications Delivery in Big Active Data. 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS). :696–705.
In this paper, we propose a set of caching strategies for big active data (BAD) systems. BAD is a data management paradigm that allows ingestion of massive amount of data from heterogeneous sources, such as sensor data, social networks, web and crowdsourced data in a large data cluster consisting of many computing and storage nodes, and enables a very large number of end users to subscribe to those data items through declarative subscriptions. A set of distributed broker nodes connect these end users to the backend data cluster, manage their subscriptions and deliver the subscription results to the end users. Unlike the most traditional publish-subscribe systems that match subscriptions against a single stream of publications to generate notifications, BAD can match subscriptions across multiple publications (by leveraging storage in the backend) and thus can enrich notifications with a rich set of diverse contents. As the matched results are delivered to the end users through the brokers, the broker node caches the results for a while so that the subscribers can retrieve them with reduced latency. Interesting research questions arise in this context so as to determine which result objects to cache or drop when the cache becomes full (eviction-based caching) or to admit objects with an explicit expiration time indicating how much time they should reside in the cache (TTL based caching). To this end, we propose a set of caching strategies for the brokers and show that the schemes achieve varying degree of efficiency in terms of notification delivery in the BAD system. We evaluate our schemes via a prototype implementation and through detailed simulation studies.