Aghakhani, Hojjat, Meng, Dongyu, Wang, Yu-Xiang, Kruegel, Christopher, Vigna, Giovanni.
2021.
Bullseye Polytope: A Scalable Clean-Label Poisoning Attack with Improved Transferability. 2021 IEEE European Symposium on Security and Privacy (EuroS P). :159—178.
A recent source of concern for the security of neural networks is the emergence of clean-label dataset poisoning attacks, wherein correctly labeled poison samples are injected into the training dataset. While these poison samples look legitimate to the human observer, they contain malicious characteristics that trigger a targeted misclassification during inference. We propose a scalable and transferable clean-label poisoning attack against transfer learning, which creates poison images with their center close to the target image in the feature space. Our attack, Bullseye Polytope, improves the attack success rate of the current state-of-the-art by 26.75% in end-to-end transfer learning, while increasing attack speed by a factor of 12. We further extend Bullseye Polytope to a more practical attack model by including multiple images of the same object (e.g., from different angles) when crafting the poison samples. We demonstrate that this extension improves attack transferability by over 16% to unseen images (of the same object) without using extra poison samples.
Li, Yang, Bai, Liyun, Zhang, Mingqi, Wang, Siyuan, Wu, Jing, Jiang, Hao.
2021.
Network Protocol Reverse Parsing Based on Bit Stream. 2021 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :83—90.
The network security problem brought by the cloud computing has become an important issue to be dealt with in information construction. Since anomaly detection and attack detection in cloud environment need to find the vulnerability through the reverse analysis of data flow, it is of great significance to carry out the reverse analysis of unknown network protocol in the security application of cloud environment. To solve this problem, an improved mining method on bitstream protocol association rules with unknown type and format is proposed. The method combines the location information of the protocol framework to make the frequent extraction process more concise and accurate. In addition, for the frame separation problem of unknown protocol, we design a hierarchical clustering algorithm based on Jaccard distance and a frame field delimitation method based on the proximity of information entropy between bytes. The experimental results show that this technology can correctly resolve the protocol format and realize the purpose of anomaly detection in cloud computing, and ensure the security of cloud services.
Zhou, Zequan, Wang, Yupeng, Luo, Xiling, Bai, Yi, Wang, Xiaochao, Zeng, Feng.
2021.
Secure Accountable Dynamic Storage Integrity Verification. 2021 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/IOP/SCI). :440—447.
Integrity verification of cloud data is of great importance for secure and effective cloud storage since attackers can change the data even though it is encrypted. Traditional integrity verification schemes only let the client know the integrity status of the remote data. When the data is corrupted, the system cannot hold the server accountable. Besides, almost all existing schemes assume that the users are credible. Instead, especially in a dynamic operation environment, users can deny their behaviors, and let the server bear the penalty of data loss. To address the issues above, we propose an accountable dynamic storage integrity verification (ADS-IV) scheme which provides means to detect or eliminate misbehavior of all participants. In the meanwhile, we modify the Invertible Bloom Filter (IBF) to recover the corrupted data and use the Mahalanobis distance to calculate the degree of damage. We prove that our scheme is secure under Computational Diffie-Hellman (CDH) assumption and Discrete Logarithm (DL) assumption and that the audit process is privacy-preserving. The experimental results demonstrate that the computational complexity of the audit is constant; the storage overhead is \$O(\textbackslashtextbackslashsqrt n )\$, which is only 1/400 of the size of the original data; and the whole communication overhead is O(1).As a result, the proposed scheme is not only suitable for large-scale cloud data storage systems, but also for systems with sensitive data, such as banking systems, medical systems, and so on.
Wang, Hong, Liu, Xiangyang, Xie, Yunhong, Zeng, Han.
2021.
The Scalable Group Testing of Invalid Signatures based on Latin Square in Wireless Sensors Networks. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). :1153—1158.
Digital signature is more appropriate for message security in Wireless Sensors Networks (WSNs), which is energy-limited, than costly encryption. However, it meets with difficulty of verification when a large amount of message-signature pairs swarm into the central node in WSNs. In this paper, a scalable group testing algorithm based on Latin square (SGTLS) is proposed, which focus on both batch verification of signatures and invalid signature identification. To address the problem of long time-delay during individual verification, we adapt aggregate signature for batch verification so as to judge whether there are any invalid signatures among the collection of signatures once. In particular, when batch verification fails, an invalid signature identification algorithm is presented based on scalable OR-checking matrix of Latin square, which can adjust the number of group testing by itself with the variation of invalid signatures. Comprehensive analyses show that SGTLS has more advantages, such as scalability, suitability for parallel computing and flexible design (Latin square is popular), than other algorithm.