Biblio
Distributed banking platforms and services forgo centralized banks to process financial transactions. For example, M-Pesa provides distributed banking service in the developing regions so that the people without a bank account can deposit, withdraw, or transfer money. The current distributed banking systems lack the transparency in monitoring and tracking of distributed banking transactions and thus do not support auditing of distributed banking transactions for accountability. To address this issue, this paper proposes a blockchain-based distributed banking (BDB) scheme, which uses blockchain technology to leverage its built-in properties to record and track immutable transactions. BDB supports distributed financial transaction processing but is significantly different from cryptocurrencies in its design properties, simplicity, and computational efficiency. We implement a prototype of BDB using smart contract and conduct experiments to show BDB's effectiveness and performance. We further compare our prototype with the Ethereum cryptocurrency to highlight the fundamental differences and demonstrate the BDB's superior computational efficiency.
It is common to certify when a file was created in digital investigations, e.g., determining first inventors for patentable ideas in intellectual property systems to resolve disputes. Secure time-stamping schemes can be derived from blockchain-based storage to protect files from backdating/forward-dating, where a file is integrated into a transaction on a blockchain and the timestamp of the corresponding block reflects the latest time the file was created. Nevertheless, blocks' timestamps in blockchains suffer from time errors, which causes the inaccuracy of files' timestamps. In this paper, we propose an accurate blockchain-based time-stamping scheme called Chronos. In Chronos, when a file is created, the file and a sufficient number of successive blocks that are latest confirmed on blockchain are integrated into a transaction. Due to chain quality, it is computationally infeasible to pre-compute these blocks. The time when the last block was chained to the blockchain serves as the earliest creation time of the file. The time when the block including the transaction was chained indicates the latest creation time of the file. Therefore, Chronos makes the file's creation time corresponding to this time interval. Based on chain growth, Chronos derives the time when these two blocks were chained from their heights on the blockchain, which ensures the accuracy of the file's timestamp. The security and performance of Chronos are demonstrated by a comprehensive evaluation.
The article analyzes the concept of "Resilience" in relation to the development of computing. The strategy for reacting to perturbations in this process can be based either on "harsh Resistance" or "smarter Elasticity." Our "Models" are descriptive in defining the path of evolutionary development as structuring under the perturbations of the natural order and enable the analysis of the relationship among models, structures and factors of evolution. Among those, two features are critical: parallelism and "fuzziness", which to a large extent determine the rate of change of computing development, especially in critical applications. Both reversible and irreversible development processes related to elastic and resistant methods of problem solving are discussed. The sources of perturbations are located in vicinity of the resource boundaries, related to growing problem size with progress combined with the lack of computational "checkability" of resources i.e. data with inadequate models, methodologies and means. As a case study, the problem of hidden faults caused by the growth, the deficit of resources, and the checkability of digital circuits in critical applications is analyzed.
Due to practical constraints in preventing phishing through public network or insecure communication channels, simple physical unclonable function (PDF)-based authentication protocol with unrestricted queries and transparent responses is vulnerable to modeling and replay attacks. In this paper, we present a PUF-based authentication method to mitigate the practical limitations in applications where a resource-rich server authenticates a device with no strong restriction imposed on the type of PUF designs or any additional protection on the binary channel used for the authentication. Our scheme uses an active deception protocol to prevent machine learning (ML) attacks on a device. The monolithic system makes collection of challenge response pairs (CRPs) easy for model building during enrollment but prohibitively time consuming upon device deployment. A genuine server can perform a mutual authentication with the device at any time with a combined fresh challenge contributed by both the server and the device. The message exchanged in clear does not expose the authentic CRPs. The false PUF multiplexing is fortified against prediction of waiting time by doubling the time penalty for every unsuccessful authentication.
Physical Unclonable Functions (PUFs) are vulnerable to various modelling attacks. The chaotic behaviour of oscillating systems can be leveraged to improve their security against these attacks. We have integrated an Arbiter PUF implemented on a FPGA with Chua's oscillator circuit to obtain robust final responses. These responses are tested against conventional Machine Learning and Deep Learning attacks for verifying security of the design. It has been found that such a design is robust with prediction accuracy of nearly 50%. Moreover, the quality of the PUF architecture is evaluated for uniformity and uniqueness metrics and Monte Carlo analysis at varying temperatures is performed for determining reliability.
An ideal audio retrieval method should be not only highly efficient in identifying an audio track from a massive audio dataset, but also robust to any distortion. Unfortunately, none of the audio retrieval methods is robust to all types of distortions. An audio retrieval method has to do with both the audio fingerprint and the strategy, especially how they are combined. We argue that the Sampling and Counting Method (SC), a state-of-the-art audio retrieval method, would be promising towards an ideal audio retrieval method, if we could make it robust to time-stretch and pitch-stretch. Towards this objective, this paper proposes a turning point alignment method to enhance SC with resistance to time-stretch, which makes Philips and Philips-like fingerprints resist to time-stretch. Experimental results show that our approach can resist to time-stretch from 70% to 130%, which is on a par to the state-of-the-art methods. It also marginally improves the retrieval performance with various noise distortions.
3D steganography is used in order to embed or hide information into 3D objects without causing visible or machine detectable modifications. In this paper we rethink about a high capacity 3D steganography based on the Hamiltonian path quantization, and increase its resistance to steganalysis. We analyze the parameters that may influence the distortion of a 3D shape as well as the resistance of the steganography to 3D steganalysis. According to the experimental results, the proposed high capacity 3D steganographic method has an increased resistance to steganalysis.
We propose a method for comparative analysis of evaluation of the cryptographic strength of the asymmetric encryption algorithms RSA and the existing GOST R 34.10-2001. Describes the fundamental design ratios, this method is based on computing capacity used for decoding and the forecast for the development of computer technology.
There are several works on the formalization of security protocols and proofs of their security in Isabelle/HOL; there have also been tools for automatically generating such proofs. This is attractive since a proof in Isabelle gives a higher assurance of the correctness than a pen-and-paper proof or the positive output of a verification tool. However several of these works have used a typed model, where the intruder is restricted to "well-typed" attacks. There also have been several works that show that this is actually not a restriction for a large class of protocols, but all these results so far are again pen-and-paper proofs. In this work we present a formalization of such a typing result in Isabelle/HOL. We formalize a constraint-based approach that is used in the proof argument of such typing results, and prove its soundness, completeness and termination. We then formalize and prove the typing result itself in Isabelle. Finally, to illustrate the real-world feasibility, we prove that the standard Transport Layer Security (TLS) handshake satisfies the main condition of the typing result.