Biblio
This paper considers the complex of models for the description, analysis, and modeling of group behavior by user actions in complex social systems. In particular, electoral processes can be considered in which preferences are selected from several possible ones. For example, for two candidates, the choice is made from three states: for the candidate A, for candidate B and undecided (candidate C). Thus, any of the voters can be in one of the three states, and the interaction between them leads to the transition between the states with some delay time intervals, which are one of the parameters of the proposed models. The dynamics of changes in the preferences of voters can be described graphically on diagram of possible transitions between states, on the basis of which is possible to write a system of differential kinetic equations that describes the process. The analysis of the obtained solutions shows the possibility of existence within the model, different modes of changing the preferences of voters. In the developed model of stochastic cellular automata with variable memory at each step of the interaction process between its cells, a new network of random links is established, the minimum and the maximum number of which is selected from a given range. At the initial time, a cell of each type is assigned a numeric parameter that specifies the number of steps during which will retain its type (cell memory). The transition of cells between states is determined by the total number of cells of different types with which there was interaction at the given number of memory steps. After the number of steps equal to the depth of memory, transition to the type that had the maximum value of its sum occurs. The effect of external factors (such as media) on changes in node types can set for each step using a transition probability matrix. Processing of the electoral campaign's sociological data of 2015-2016 at the choice of the President of the United States using the method of almost-periodic functions allowed to estimate the parameters of a set of models and use them to describe, analyze and model the group behavior of voters. The studies show a good correspondence between the data observed in sociology and calculations using a set of developed models. Under some sets of values of the coefficients in the differential equations and models of cellular automata are observed the oscillating and almost-periodic character of changes in the preferences of the electorate, which largely coincides with the real observations.
Deep neural networks are susceptible to various inference attacks as they remember information about their training data. We design white-box inference attacks to perform a comprehensive privacy analysis of deep learning models. We measure the privacy leakage through parameters of fully trained models as well as the parameter updates of models during training. We design inference algorithms for both centralized and federated learning, with respect to passive and active inference attackers, and assuming different adversary prior knowledge. We evaluate our novel white-box membership inference attacks against deep learning algorithms to trace their training data records. We show that a straightforward extension of the known black-box attacks to the white-box setting (through analyzing the outputs of activation functions) is ineffective. We therefore design new algorithms tailored to the white-box setting by exploiting the privacy vulnerabilities of the stochastic gradient descent algorithm, which is the algorithm used to train deep neural networks. We investigate the reasons why deep learning models may leak information about their training data. We then show that even well-generalized models are significantly susceptible to white-box membership inference attacks, by analyzing state-of-the-art pre-trained and publicly available models for the CIFAR dataset. We also show how adversarial participants, in the federated learning setting, can successfully run active membership inference attacks against other participants, even when the global model achieves high prediction accuracies.
This paper shows that stochastic heuristic approach for implicitly solving addition chain problem (ACP) in public-key cryptosystem (PKC) enhances the efficiency of the PKC and improves the security by blinding the multiplications/squaring operations involved against side-channel attack (SCA). We show that while the current practical heuristic approaches being deterministic expose the fixed pattern of the operations, using stochastic method blinds the pattern by being unpredictable and generating diffident pattern of operation for the same exponent at a different time. Thus, if the addition chain (AC) is generated implicitly every time the exponentiation operation is being made, needless for such approaches as padding by insertion of dummy operations and the operation is still totally secured against the SCA. Furthermore, we also show that the stochastic approaches, when carefully designed, further reduces the length of the operation than state-of-the-art practical methods for improving the efficiency. We demonstrated our investigation by implementing RSA cryptosystem using the stochastic approach and the results benchmarked with the existing current methods.
In Software Defined Networking (SDN) control plane of forwarding devices is concentrated in the SDN controller, which assumes the role of a network operating system. Big share of today's commercial SDN controllers are based on OpenDaylight, an open source SDN controller platform, whose bug repository is publicly available. In this article we provide a first insight into 8k+ bugs reported in the period over five years between March 2013 and September 2018. We first present the functional components in OpenDaylight architecture, localize the most vulnerable modules and measure their contribution to the total bug content. We provide high fidelity models that can accurately reproduce the stochastic behaviour of bug manifestation and bug removal rates, and discuss how these can be used to optimize the planning of the test effort, and to improve the software release management. Finally, we study the correlation between the code internals, derived from the Git version control system, and software defect metrics, derived from Jira issue tracker. To the best of our knowledge, this is the first study to provide a comprehensive analysis of bug characteristics in a production grade SDN controller.
As an information hinge of various trades and professions in the era of big data, cloud data center bears the responsibility to provide uninterrupted service. To cope with the impact of failure and interruption during the operation on the Quality of Service (QoS), it is important to guarantee the resilience of cloud data center. Thus, different resilience actions are conducted in its life circle, that is, resilience strategy. In order to measure the effect of resilience strategy on the system resilience, this paper propose a new approach to model and evaluate the resilience strategy for cloud data center focusing on its core part of service providing-IT architecture. A comprehensive resilience metric based on resilience loss is put forward considering the characteristic of cloud data center. Furthermore, mapping model between system resilience and resilience strategy is built up. Then, based on a hierarchical colored generalized stochastic petri net (HCGSPN) model depicting the procedure of the system processing the service requests, simulation is conducted to evaluate the resilience strategy through the metric calculation. With a case study of a company's cloud data center, the applicability and correctness of the approach is demonstrated.
Deep neural networks (DNNs) are effective machine learning models to solve a large class of recognition problems, including the classification of nonlinearly separable patterns. The applications of DNNs are, however, limited by the large size and high energy consumption of the networks. Recently, stochastic computation (SC) has been considered to implement DNNs to reduce the hardware cost. However, it requires a large number of random number generators (RNGs) that lower the energy efficiency of the network. To overcome these limitations, we propose the design of an energy-efficient deep belief network (DBN) based on stochastic computation. An approximate SC activation unit (A-SCAU) is designed to implement different types of activation functions in the neurons. The A-SCAU is immune to signal correlations, so the RNGs can be shared among all neurons in the same layer with no accuracy loss. The area and energy of the proposed design are 5.27% and 3.31% (or 26.55% and 29.89%) of a 32-bit floating-point (or an 8-bit fixed-point) implementation. It is shown that the proposed SC-DBN design achieves a higher classification accuracy compared to the fixed-point implementation. The accuracy is only lower by 0.12% than the floating-point design at a similar computation speed, but with a significantly lower energy consumption.
Popularization of the Internet-of-Things (IoT) has brought widespread concerns on IoT security, especially in face of several recent security incidents related to IoT devices. Due to the resource-constrained nature of many IoT devices, security offloading has been proposed to provide good-enough security for IoT with minimum overhead on the devices. In this paper, we investigate the inevitable risk associated with security offloading: the unprotected and unmonitored transmission from IoT devices to the offloaded security mechanisms. An important challenge in modeling the security risk is the dynamic nature of IoT due to demand fluctuations and infrastructure instability. We propose a stochastic model to capture both the expected and worst-case security risks of an IoT system. We then propose a framework to efficiently address the optimal robust deployment of security mechanisms in IoT. We use results from extensive simulations to demonstrate the superb performance and efficiency of our approach compared to several other algorithms.
The Internet of things (IoT) is revolutionizing the management and control of automated systems leading to a paradigm shift in areas, such as smart homes, smart cities, health care, and transportation. The IoT technology is also envisioned to play an important role in improving the effectiveness of military operations in battlefields. The interconnection of combat equipment and other battlefield resources for coordinated automated decisions is referred to as the Internet of battlefield things (IoBT). IoBT networks are significantly different from traditional IoT networks due to battlefield specific challenges, such as the absence of communication infrastructure, heterogeneity of devices, and susceptibility to cyber-physical attacks. The combat efficiency and coordinated decision-making in war scenarios depends highly on real-time data collection, which in turn relies on the connectivity of the network and information dissemination in the presence of adversaries. This paper aims to build the theoretical foundations of designing secure and reconfigurable IoBT networks. Leveraging the theories of stochastic geometry and mathematical epidemiology, we develop an integrated framework to quantify the information dissemination among heterogeneous network devices. Consequently, a tractable optimization problem is formulated that can assist commanders in cost effectively planning the network and reconfiguring it according to the changing mission requirements.