Biblio
Trust prediction in online social networks is crucial for information dissemination, product promotion, and decision making. Existing work on trust prediction mainly utilizes the network structure or the low-rank approximation of a trust network. These approaches can suffer from the problem of data sparsity and prediction accuracy. Inspired by the homophily theory, which shows a pervasive feature of social and economic networks that trust relations tend to be developed among similar people, we propose a novel deep user model for trust prediction based on user similarity measurement. It is a comprehensive data sparsity insensitive model that combines a user review behavior and the item characteristics that this user is interested in. With this user model, we firstly generate a user's latent features mined from user review behavior and the item properties that the user cares. Then we develop a pair-wise deep neural network to further learn and represent these user features. Finally, we measure the trust relations between a pair of people by calculating the user feature vector cosine similarity. Extensive experiments are conducted on two real-world datasets, which demonstrate the superior performance of the proposed approach over the representative baseline works.
Online Social Networks(OSN) plays a vital role in our day to day life. The most popular social network, Facebook alone counts currently 2.23 billion users worldwide. Online social network users are aware of the various security risks that exist in this scenario including privacy violations and they are utilizing the privacy settings provided by OSN providers to make their data safe. But most of them are unaware of the risk which exists after deletion of their data which is not really getting deleted from the OSN server. Self destruction of data is one of the prime recommended methods to achieve assured deletion of data. Numerous techniques have been developed for self destruction of data and this paper discusses and evaluates these techniques along with the various privacy risks faced by an OSN user in this web centered world.
Detecting fake accounts (sybils) in online social networks (OSNs) is vital to protect OSN operators and their users from various malicious activities. Typical graph-based sybil detection (a mainstream methodology) assumes that sybils can make friends with only a limited (or small) number of honest users. However, recent evidences showed that this assumption does not hold in real-world OSNs, leading to low detection accuracy. To address this challenge, we explore users' activities to assist sybil detection. The intuition is that honest users are much more selective in choosing who to interact with than to befriend with. We first develop the social and activity network (SAN), a two-layer hyper-graph that unifies users' friendships and their activities, to fully utilize users' activities. We also propose a more practical sybil attack model, where sybils can launch both friendship attacks and activity attacks. We then design Sybil SAN to detect sybils via coupling three random walk-based algorithms on the SAN, and prove the convergence of Sybil SAN. We develop an efficient iterative algorithm to compute the detection metric for Sybil SAN, and derive the number of rounds needed to guarantee the convergence. We use "matrix perturbation theory" to bound the detection error when sybils launch many friendship attacks and activity attacks. Extensive experiments on both synthetic and real-world datasets show that Sybil SAN is highly robust against sybil attacks, and can detect sybils accurately under practical scenarios, where current state-of-art sybil defenses have low accuracy.
Personal privacy is an important issue when publishing social network data. An attacker may have information to reidentify private data. So, many researchers developed anonymization techniques, such as k-anonymity, k-isomorphism, l-diversity, etc. In this paper, we focus on graph k-degree anonymity by editing edges. Our method is divided into two steps. First, we propose an efficient algorithm to find a new degree sequence with theoretically minimal edit cost. Second, we insert and delete edges based on the new degree sequence to achieve k-degree anonymity.
In assessing privacy on online social networks, it is important to investigate their vulnerability to reconnaissance strategies, in which attackers lure targets into being their friends by exploiting the social graph in order to extract victims' sensitive information. As the network topology is only partially revealed after each successful friend request, attackers need to employ an adaptive strategy. Existing work only considered a simple strategy in which attackers sequentially acquire one friend at a time, which causes tremendous delay in waiting for responses before sending the next request, and which lack the ability to retry failed requests after the network has changed. In contrast, we investigate an adaptive and parallel strategy, of which attackers can simultaneously send multiple friend requests in batch and recover from failed requests by retrying after topology changes, thereby significantly reducing the time to reach the targets and greatly improving robustness. We cast this approach as an optimization problem, Max-Crawling, and show it inapproximable within (1 - 1/e + $ε$). We first design our core algorithm PM-AReST which has an approximation ratio of (1 - e-(1-1/e)) using adaptive monotonic submodular properties. We next tighten our algorithm to provide a nearoptimal solution, i.e. having a ratio of (1 - 1/e), via a two-stage stochastic programming approach. We further establish the gap bound of (1 - e-(1-1/e)2) between batch strategies versus the optimal sequential one. We experimentally validate our theoretical results, finding that our algorithm performs nearoptimally in practice and that this is robust under a variety of problem settings.
This tutorial provides a thorough review of the main research directions in the field of identity management and identity related security threats in Online Social Networks (OSNs). The continuous increase in the numbers and sophistication levels of fake accounts constitutes a big threat to the privacy and to the security of honest OSN users. Uninformed OSN users could be easily fooled into accepting friendship links with fake accounts, giving them by that access to personal information they intend to exclusively share with their real friends. Moreover, these fake accounts subvert the security of the system by spreading malware, connecting with honest users for nefarious goals such as sexual harassment or child abuse, and make the social computing environment mostly untrustworthy. The tutorial introduces the main available research results available in this area, and presents our work on collaborative identity validation techniques to estimate OSN profiles trustworthiness.
Clickjacking attacks are emerging threats to websites of different sizes and shapes. They are particularly used by threat agents to get more likes and/or followers in Online Social Networks (OSNs). This paper reviews the clickjacking attacks and the classic solutions to tackle various forms of those attacks. Different approaches of Cross-Site Scripting attacks are implemented in this study to study the attack tools and methods. Various iFrame attacks have been developed to tamper with the integrity of the website interactions at the application layer. By visually demonstrating the attacks such as Cross-Site scripting (XSS) and Cross-Site Request Forgery (CSRF), users will be able to have a better understanding of such attacks in their formulation and the risks associated with them.
The huge popularity of online social networks and the potential financial gain have led to the creation and proliferation of zombie accounts, i.e., fake user accounts. For considerable amount of payment, zombie accounts can be directed by their managers to provide pre-arranged biased reactions to different social events or the quality of a commercial product. It is thus critical to detect and screen these accounts. Prior arts are either inaccurate or relying heavily on complex posting/tweeting behaviors in the classification process of normal/zombie accounts. In this work, we propose to use a bi-level penalized logistic classifier, an efficient high-dimensional data analysis technique, to detect zombie accounts based on their publicly available profile information and the statistics of their followers' registration locations. Our approach, termed (B)i-level (P)enalized (LO)gistic (C)lassifier (BPLOC), is data adaptive and can be extended to mount more accurate detections. Our experimental results are based on a small number of SINA WeiBo accounts and have demonstrated that BPLOC can classify zombie accounts accurately.
Federated identity providers, e.g., Facebook and PayPal, offer a convenient means for authenticating users to third-party applications. Unfortunately such cross-site authentications carry privacy and tracking risks. For example, federated identity providers can learn what applications users are accessing; meanwhile, the applications can know the users' identities in reality. This paper presents Crypto-Book, an anonymizing layer enabling federated identity authentications while preventing these risks. Crypto-Book uses a set of independently managed servers that employ a (t,n)-threshold cryptosystem to collectively assign credentials to each federated identity (in the form of either a public/private keypair or blinded signed messages). With the credentials in hand, clients can then leverage anonymous authentication techniques such as linkable ring signatures or partially blind signatures to log into third-party applications in an anonymous yet accountable way. We have implemented a prototype of Crypto-Book and demonstrated its use with three applications: a Wiki system, an anonymous group communication system, and a whistleblower submission system. Crypto-Book is practical and has low overhead: in a deployment within our research group, Crypto-Book group authentication took 1.607s end-to-end, an overhead of 1.2s compared to traditional non-privacy-preserving federated authentication.
Online Social Networks have emerged as an interesting area for analysis where each user having a personalized user profile interact and share information with each other. Apart from analyzing the structural characteristics, detection of abnormal and anomalous activities in social networks has become need of the hour. These anomalous activities represent the rare and mischievous activities that take place in the network. Graphical structure of social networks has encouraged the researchers to use various graph metrics to detect the anomalous activities. One such measure that seemed to be highly beneficial to detect the anomalies was brokerage value which helped to detect the anomalies with high accuracy. Also, further application of the measure to different datasets verified the fact that the anomalous behavior detected by the proposed measure was efficient as compared to the already proposed measures in Oddball Algorithm.
Massive online social networks with hundreds of millions of active users are increasingly being used by Cyber criminals to spread malicious software (malware) to exploit vulnerabilities on the machines of users for personal gain. Twitter is particularly susceptible to such activity as, with its 140 character limit, it is common for people to include URLs in their tweets to link to more detailed information, evidence, news reports and so on. URLs are often shortened so the endpoint is not obvious before a person clicks the link. Cyber criminals can exploit this to propagate malicious URLs on Twitter, for which the endpoint is a malicious server that performs unwanted actions on the person's machine. This is known as a drive-by-download. In this paper we develop a machine classification system to distinguish between malicious and benign URLs within seconds of the URL being clicked (i.e. `real-time'). We train the classifier using machine activity logs created while interacting with URLs extracted from Twitter data collected during a large global event - the Superbowl - and test it using data from another large sporting event - the Cricket World Cup. The results show that machine activity logs produce precision performances of up to 0.975 on training data from the first event and 0.747 on a test data from a second event. Furthermore, we examine the properties of the learned model to explain the relationship between machine activity and malicious software behaviour, and build a learning curve for the classifier to illustrate that very small samples of training data can be used with only a small detriment to performance.