Biblio
Internet of Things (IoT), commonly referred to a physical object connected to network, refers to a paradigm in information technology integrating the advances in terms of sensing, computation and communication to improve the service in daily life. This physical object consists of sensors and actuators that are capable of changing the data to offer the improvement of service quality in daily life. When a data exchange occurs, the exchanged data become sensitive; making them vulnerable to any security attacks, one of which, for example, is Sybil attack. This paper aimed to propose a method of trustworthiness management based upon the authentication and trust value. Once performing the test on three scenarios, the system was found to be capable of detecting the Sybil attack rapidly and accurately. The average of time to detect the Sybil attacks was 9.3287 seconds and the average of time required to detect the intruder object in the system was 18.1029 seconds. The accuracy resulted in each scenario was found 100% indicating that the detection by the system to Sybil attack was 100% accurate.
{Static characteristic extraction method Control flow-based features proposed by Ding has the ability to detect malicious code with higher accuracy than traditional Text-based methods. However, this method resolved NP-hard problem in a graph, therefore it is not feasible with the large-size and high-complexity programs. So, we propose the C500-CFG algorithm in Control flow-based features based on the idea of dynamic programming, solving Ding's NP-hard problem in O(N2) time complexity, where N is the number of basic blocks in decom-piled executable codes. Our algorithm is more efficient and more outstanding in detecting malware than Ding's algorithm: fast processing time, allowing processing large files, using less memory and extracting more feature information. Applying our algorithms with IoT data sets gives outstanding results on 2 measures: Accuracy = 99.34%
IoT malware detection using control flow graph (CFG)-based features and deep learning networks are widely explored. The main goal of this study is to investigate the robustness of such models against adversarial learning. We designed two approaches to craft adversarial IoT software: off-the-shelf methods and Graph Embedding and Augmentation (GEA) method. In the off-the-shelf adversarial learning attack methods, we examine eight different adversarial learning methods to force the model to misclassification. The GEA approach aims to preserve the functionality and practicality of the generated adversarial sample through a careful embedding of a benign sample to a malicious one. Intensive experiments are conducted to evaluate the performance of the proposed method, showing that off-the-shelf adversarial attack methods are able to achieve a misclassification rate of 100%. In addition, we observed that the GEA approach is able to misclassify all IoT malware samples as benign. The findings of this work highlight the essential need for more robust detection tools against adversarial learning, including features that are not easy to manipulate, unlike CFG-based features. The implications of the study are quite broad, since the approach challenged in this work is widely used for other applications using graphs.
We propose a distributed machine-learning architecture to predict trustworthiness of sensor services in Mobile Edge Computing (MEC) based Internet of Things (IoT) services, which aligns well with the goals of MEC and requirements of modern IoT systems. The proposed machine-learning architecture models training a distributed trust prediction model over a topology of MEC-environments as a Network Lasso problem, which allows simultaneous clustering and optimization on large-scale networked-graphs. We then attempt to solve it using Alternate Direction Method of Multipliers (ADMM) in a way that makes it suitable for MEC-based IoT systems. We present analytical and simulation results to show the validity and efficiency of the proposed solution.
With the development of IoT and 5G networks, the demand for the next-generation intelligent transportation system has been growing at a rapid pace. Dynamic mapping has been considered one of the key technologies to reduce traffic accidents and congestion in the intelligent transportation system. However, as the number of vehicles keeps growing, a huge volume of mapping traffic may overload the central cloud, leading to serious performance degradation. In this paper, we propose and prototype a CUPS (control and user plane separation)-based edge computing architecture for the dynamic mapping and quantify its benefits by prototyping. There are a couple of merits of our proposal: (i) we can mitigate the overhead of the networks and central cloud because we only need to abstract and send global dynamic mapping information from the edge servers to the central cloud; (ii) we can reduce the response latency since the dynamic mapping traffic can be isolated from other data traffic by being generated and distributed from a local edge server that is deployed closer to the vehicles than the central server in cloud. The capabilities of our system have been quantified. The experimental results have shown our system achieves throughput improvement by more than four times, and response latency reduction by 67.8% compared to the conventional central cloud-based approach. Although these results are still obtained from the preliminary evaluations using our prototype system, we believe that our proposed architecture gives insight into how we utilize CUPS and edge computing to enable efficient dynamic mapping applications.
With the development of Internet of Things, numerous IoT devices have been brought into our daily lives. Bluetooth Low Energy (BLE), due to the low energy consumption and generic service stack, has become one of the most popular wireless communication technologies for IoT. However, because of the short communication range and exclusive connection pattern, a BLE-equipped device can only be used by a single user near the device. To fully explore the benefits of BLE and make BLE-equipped devices truly accessible over the Internet as IoT devices, in this paper, we propose a cloud-based software framework that can enable multiple users to interact with various BLE IoT devices over the Internet. This framework includes an agent program, a suite of services hosting in cloud, and a set of RESTful APIs exposed to Internet users. Given the availability of this framework, the access to BLE devices can be extended from local to the Internet scale without any software or hardware changes to BLE devices, and more importantly, shared usage of remote BLE devices over the Internet is also made available.
Advancements in computing, communication, and sensing technologies are making it possible to embed, control, and gather vital information from tiny devices that are being deployed and utilized in practically every aspect of our modernized society. From smart home appliances to municipal water and electric industrial facilities to our everyday work environments, the next Internet frontier, dubbed IoT, is promising to revolutionize our lives and tackle some of our nations' most pressing challenges. While the seamless interconnection of IoT devices with the physical realm is envisioned to bring a plethora of critical improvements in many aspects and diverse domains, it will undoubtedly pave the way for attackers that will target and exploit such devices, threatening the integrity of their data and the reliability of critical infrastructure. Further, such compromised devices will undeniably be leveraged as the next generation of botnets, given their increased processing capabilities and abundant bandwidth. While several demonstrations exist in the literature describing the exploitation procedures of a number of IoT devices, the up-to-date inference, characterization, and analysis of unsolicited IoT devices that are currently deployed "in the wild" is still in its infancy. In this article, we address this imperative task by leveraging active and passive measurements to report on unsolicited Internet-scale IoT devices. This work describes a first step toward exploring the utilization of passive measurements in combination with the results of active measurements to shed light on the Internet-scale insecurities of the IoT paradigm. By correlating results of Internet-wide scanning with Internet background radiation traffic, we disclose close to 14,000 compromised IoT devices in diverse sectors, including critical infrastructure and smart home appliances. To this end, we also analyze their generated traffic to create effective mitigation signatures that could be deployed in local IoT realms. To support largescale empirical data analytics in the context of IoT, we make available the inferred and extracted IoT malicious raw data through an authenticated front-end service. The outcomes of this work confirm the existence of such compromised devices on an Internet scale, while the generated inferences and insights are postulated to be employed for inferring other similarly compromised IoT devices, in addition to contributing to IoT cyber security situational awareness.
The upsurge of Industrial Internet of Things is forcing industrial information systems to enable less hierarchical information flow. The connections between humans, devices, and their digital twins are growing in numbers, creating a need for new kind of security and trust solutions. To address these needs, industries are applying distributed ledger technologies, aka blockchains. A significant number of use cases have been studied in the sectors of logistics, energy markets, smart grid security, and food safety, with frequently reported benefits in transparency, reduced costs, and disintermediation. However, distributed ledger technologies have challenges with transaction throughput, latency, and resource requirements, which render the technology unusable in many cases, particularly with constrained Internet of Things devices.To overcome these challenges within the Industrial Internet of Things, we suggest a set of interledger approaches that enable trusted information exchange across different ledgers and constrained devices. With these approaches, the technically most suitable ledger technology can be selected for each use case while simultaneously enjoying the benefits of the most widespread ledger implementations. We present state of the art for distributed ledger technologies to support the use of interledger approaches in industrial settings.