Biblio
The Internet of Things (IoT) market is growing rapidly, allowing continuous evolution of new technologies. Alongside this development, most IoT devices are easy to compromise, as security is often not a prioritized characteristic. This paper proposes a novel IoT Security Model (IoTSM) that can be used by organizations to formulate and implement a strategy for developing end-to-end IoT security. IoTSM is grounded by the Software Assurance Maturity Model (SAMM) framework, however it expands it with new security practices and empirical data gathered from IoT practitioners. Moreover, we generalize the model into a conceptual framework. This approach allows the formal analysis for security in general and evaluates an organization's security practices. Overall, our proposed approach can help researchers, practitioners, and IoT organizations, to discourse about IoT security from an end-to-end perspective.
Fog computing has emerged due to the problem that it becomes difficult to store every data to the cloud system as the number of Internet of Things increases. In this fog computing, a vast amount of data generated from the Internet of Things is transmitted to the cloud system located at a remote place, and is processed by a fog computer such as a sensor or a router located nearby, so that only the necessary data is transmitted to the cloud system. However, the above-mentioned fog computer has some drawbacks like being shut down due to an attack by a malicious user in advance, and a method of processing when a fog computer is down or restored. In this paper we describe a fog computing with blockchain that enables fog computers to share transaction generated by processing transaction information of a device controlled by a blockchain method to a security and device control method of a fog computer utilizing the technology. Furthemore by using security properties of blockchain such as authentication, non-repudiation and data integrity, fog computing using blockchain has advantage of security comparing to previous Cloud and fog computing system using centralized database or P2P networks.
Securing Internet of things is a major concern as it deals with data that are personal, needed to be reliable, can direct and manipulate device decisions in a harmful way. Also regarding data generation process is heterogeneous, data being immense in volume, complex management. Quantum Computing and Internet of Things (IoT) coined as Quantum IoT defines a concept of greater security design which harness the virtue of quantum mechanics laws in Internet of Things (IoT) security management. Also it ensures secured data storage, processing, communication, data dynamics. In this paper, an IoT security infrastructure is introduced which is a hybrid one, with an extra layer, which ensures quantum state. This state prevents any sort of harmful actions from the eavesdroppers in the communication channel and cyber side, by maintaining its state, protecting the key by quantum cryptography BB84 protocol. An adapted version is introduced specific to this IoT scenario. A classical cryptography system `One-Time pad (OTP)' is used in the hybrid management. The novelty of this paper lies with the integration of classical and quantum communication for Internet of Things (IoT) security.
The RFID based communication between objects within the framework of IoT is potentially very efficient in terms of power requirements and system complexity. The new design incorporating the emerging chipless RFID tags has the potential to make the system more efficient and simple. However, these systems are prone to privacy and security risks and these challenges associated with such systems have not been addressed appropriately in the broader IoT framework. In this context, a lightweight collision free algorithm based on n-bit pseudo random number generator, X-OR hash function, and rotations for chipless RFID system is presented. The algorithm has been implemented on an 8-bit open-loop resonator based chipless RFID tag based system and is validated using BASYS 2 FPGA board based platform. The proposed scheme has been shown to possess security against various attacks such as Denial of Service (DoS), tag/reader anonymity, and tag impersonation.
This paper presents a survey on the main security problems that affect the communication protocols in the context of Internet of Things, in order to identify possible threats and vulnerabilities. The protocols RFID, NFC, 6LoWPAN, 6TiSCH, DTSL, CoAP and MQTT, for a better organization, were explored and categorized in layers according to the TCP / IP reference model. At the end, a summary is presented in tabular form with the security modes used for each protocol is used.
Cyber-Physical Systems (CPSs) are engineered systems seamlessly integrating computational algorithms and physical components. CPS advances offer numerous benefits to domains such as health, transportation, smart homes and manufacturing. Despite these advances, the overall cybersecurity posture of CPS devices remains unclear. In this paper, we provide knowledge on how to improve CPS resiliency by evaluating and comparing the accuracy, and scalability of two popular vulnerability assessment tools, Nessus and OpenVAS. Accuracy and suitability are evaluated with a diverse sample of pre-defined vulnerabilities in Industrial Control Systems (ICS), smart cars, smart home devices, and a smart water system. Scalability is evaluated using a large-scale vulnerability assessment of 1,000 Internet accessible CPS devices found on Shodan, the search engine for the Internet of Things (IoT). Assessment results indicate several CPS devices from major vendors suffer from critical vulnerabilities such as unsupported operating systems, OpenSSH vulnerabilities allowing unauthorized information disclosure, and PHP vulnerabilities susceptible to denial of service attacks.
A Stoner-Wohlfarth-type model is used to demonstrate the effect of the buildup of magnetic charges near the grain boundaries of low anisotropy polycrystalline materials, revealed by measuring the magnetization during positive-field warming after negative-field cooling. The remnant magnetization after negative-field cooling has two different contributions. The temperature-dependent component is modeled as an assembly of particles with thermal relaxation. The temperature-independent component is modeled as an assembly of particles overcoming variable phenomenological energy barriers corresponding to the change in susceptibility when the anisotropy constant changes its sign. The model is applicable to soft-magnetic materials where the buildup of the magnetic charges near the grain boundaries creates demagnetizing fields opposing, and comparable in magnitude to, the anisotropy field. The results of the model are in qualitative agreement with published data revealing the magneto-thermal characteristics of polycrystalline gadolinium.
The understanding of measured jitter is improved in three ways. First, it is shown that the measured jitter is not only governed by written-in jitter and the reader resolution along the cross-track direction but by remanence noise in the vicinity of transitions and the down-track reader resolution as well. Second, a novel data analysis scheme is introduced that allows for an unambiguous separation of these two contributions. Third, based on data analyses involving the first two learnings and micro-magnetic simulations, we identify and explain the root causes for variations of jitter with write current (WC) (write field), WC overshoot amplitude (write-field rise time), and linear disk velocity measured for heat-assisted magnetic recording.
Micromagnetic simulations of coercivity as a function of external magnetic field direction were performed for a hexagonal array of hemispherical Permalloy nanocaps. The analysis was based on hysteresis loops for arrangements of nanocaps of variable thickness (5 nm and 10 nm). The angular dependence of coercivity had a maximum at about 80° with respect to the arrangement plane. An increase in coercivity with nanocap thickness is related to the magnetization reversal mechanism, where the dipole energy of individual caps generates an effective intermediate axis, locking the magnetic moments. The coercivity has maximum values of 109 Oe for 5 nm and 156 Oe for 10 nm thickness. The remanence decreases monotonically with angle. This is associated with the influence of shape anisotropy, where the demagnetizing field in the plane of the array is much smaller than the demagnetizing field perpendicular to the plane.
In order to study the stress detection method on long-distance oil and gas pipeline, the distribution characteristics of the surface remanence signals in the stress concentration regions must be known. They were studied by using the magnetic domain model in the non-magnetic saturation state. The finite element method was used herein with the aim to analyse the static and mechanical characteristics of a ferromagnetic specimen. The variation law of remanence signal in stress concentration regions was simulated. The results show that a residue signal in the stress concentration region exists. In addition, a one-to-one correspondence in the non-magnetic saturation environment is evident. In the case of magnetic saturation, the remanence signal of the stress concentration region is covered and the signal cannot be recognised.
Transition noise and remanence noise are the two most important types of media noise in heat-assisted magnetic recording. We examine two methods (spatial splitting and principal components analysis) to distinguish them: both techniques show similar trends with respect to applied field and grain pitch (GP). It was also found that PW50can be affected by GP and reader design, but is almost independent of write field and bit length (larger than 50 nm). Interestingly, our simulation shows a linear relationship between jitter and PW50NSRrem, which agrees qualitatively with experimental results.
Robots are sophisticated form of IoT devices as they are smart devices that scrutinize sensor data from multiple sources and observe events to decide the best procedural actions to supervise and manoeuvre objects in the physical world. In this paper, localization of the robot is addressed by QR code Detection and path optimization is accomplished by Dijkstras algorithm. The robot can navigate automatically in its environment with sensors and shortest path is computed whenever heading measurements are updated with QR code landmark recognition. The proposed approach highly reduces computational burden and deployment complexity as it reflects the use of artificial intelligence to self-correct its course when required. An Encrypted communication channel is established over wireless local area network using SSHv2 protocol to transfer or receive sensor data(or commands) making it an IoT enabled Robot.
Industry 4.0 is based on the CPS architecture since it is the next generation in the industry. The CPS architecture is a system based on Cloud Computing technology and Internet of Things where computer elements collaborate for the control of physical entities. The security framework in this architecture is necessary for the protection of two parts (physical and information) so basically, security in CPS is classified into two main parts: information security (data) and security of control. In this work, we propose two models to solve the two problems detected in the security framework. The first proposal SCCAF (Smart Cloud Computing Adoption Framework) treats the nature of information that serves for the detection and the blocking of the threats our basic architecture CPS. The second model is a modeled detector related to the physical nature for detecting node information.
This paper presents a contemporary review of communication architectures and topographies for MANET-connected Internet-of-Things (IoT) systems. Routing protocols for multi-hop MANETs are analyzed with a focus on the standardized Routing Protocol for Low-power and Lossy Networks. Various security threats and vulnerabilities in current MANET routing are described and security enhanced routing protocols and trust models presented as methodologies for supporting secure routing. Finally, the paper identifies some key research challenges in the emerging domain of MANET-IoT connectivity.
The existing research on the Internet of Things(IoT) security mainly focuses on attack and defense on a single protocol layer. Increasing and ubiquitous use of loT also makes it vulnerable to many attacks. An attacker try to performs the intelligent, brutal and stealthy attack that can reduce the risk of being detected. In these kinds of attacks, the attackers not only restrict themselves to a single layer of protocol stack but they also try to decrease the network performance and throughput by a simultaneous and coordinated attack on different layers. A new class of attacks, termed as cross-layer attack became prominent due to lack of interaction between MAC, routing and upper layers. These attacks achieve the better effect with reduced cost. Research has been done on cross-layer attacks in other domains like Cognitive Radio Network(CRN), Wireless Sensor Networks(WSN) and ad-hoc networks. However, our proposed scheme of cross-layer attack in IoT is the first paper to the best of our knowledge. In this paper, we have proposed Rank Manipulation and Drop Delay(RMDD) cross-layer attack in loT, we have investigated how small intensity attack on Routing protocol for low power lossy networks (RPL) degrades the overall application throughput. We have exploited the Rank system of the RPL protocol to implement the attacks. Rank is given to each node in the graph, and it shows its position in the network. If the rank could be manipulated in some manner, then the network topology can be modified. Simulation results demonstrate that the proposed attacks degrade network performance very much in terms of the throughput, latency, and connectivity.
The healthcare sector is exploring the incorporation of digital solutions in order to improve access, reduce costs, increase quality and enhance their capacity in reaching a higher number of citizens. However, this opens healthcare organisations' systems to external elements used within or beyond their premises, new risks and vulnerabilities in what regards cyber threats and incidents. We propose the creation of a Security Assessment as a Service (SAaaS) crosslayered system that is able to identify vulnerabilities and proactively assess and mitigate threats in an IT healthcare ecosystem exposed to external devices and interfaces, considering that most users are not experts (even technologically illiterate") in cyber security and, thus, unaware of security tactics or policies whatsoever. The SAaaS can be integrated in an IT healthcare environment allowing the monitoring of existing and new devices, the limitation of connectivity and privileges to new devices, assess a device's cybersecurity risk and - based on the device's behaviour - the assignment and revoking of privileges. The SAaaS brings a controlled cyber aware environment that assures security, confidentiality and trust, even in the presence of non-trusted devices and environments.
Internet of Things (IoT) is a contemporary concept for connecting the existing things in our environment with the Internet for a sake of making the objects information are accessible from anywhere and anytime to support a modern life style based on the Internet. With the rapid development of the IoT technologies and widely spreading in most of the fields such as buildings, health, education, transportation and agriculture. Thus, the IoT applications require increasing data collection from the IoT devices to send these data to the applications or servers which collect or analyze the data, so it is a very important to secure the data and ensure that do not reach a malicious adversary. This paper reviews some attacks in the IoT applications and the security weaknesses in the IoT environment. In addition, this study presents the challenges of IoT in terms of hardware, network and software. Moreover, this paper summarizes and points to some attacks on the smart car, smart home, smart campus, smart farm and healthcare.
Internet of Things (IoT) is experiencing exponential scalability. This scalability introduces new challenges regarding management of IoT networks. The question that emerges is how we can trust the constrained infrastructure that shortly is expected to be formed by millions of 'things.' The answer is not to trust. This research introduces Amatista, a blockchain-based middleware for management in IoT. Amatista presents a novel zero-trust hierarchical mining process that allows validating the infrastructure and transactions at different levels of trust. This research evaluates Amatista on Edison Arduino Boards.
The evolution of the enterprise computing landscape towards emerging trends such as fog/edge computing and the Industrial Internet of Things (IIoT) are leading to a change of approach to securing computer networks to deal with challenges such as mobility, virtualized infrastructures, dynamic and heterogeneous user contexts and transaction-based interactions. The uncertainty introduced by such dynamicity introduces greater uncertainty into the access control process and motivates the need for risk-based access control decision making. Thus, the traditional perimeter-based security paradigm is increasingly being abandoned in favour of a so called "zero trust networking" (ZTN). In ZTN networks are partitioned into zones with different levels of trust required to access the zone resources depending on the assets protected by the zone. All accesses to sensitive information is subject to rigorous access control based on user and device profile and context. In this paper we outline a policy enforcement framework to address many of open challenges for risk-based access control for ZTN. We specify the design of required policy languages including a generic firewall policy language to express firewall rules. We design a mechanism to map these rules to specific firewall syntax and to install the rules on the firewall. We show the viability of our design with a small proof-of-concept.