Wang, Jian, Guo, Shize, Chen, Zhe, Zhang, Tao.
2019.
A Benchmark Suite of Hardware Trojans for On-Chip Networks. IEEE Access. 7:102002—102009.
As recently studied, network-on-chip (NoC) suffers growing threats from hardware trojans (HTs), leading to performance degradation or information leakage when it provides communication service in many/multi-core systems. Therefore, defense techniques against NoC HTs experience rapid development in recent years. However, to the best of our knowledge, there are few standard benchmarks developed for the defense techniques evaluation. To address this issue, in this paper, we design a suite of benchmarks which involves multiple NoCs with different HTs, so that researchers can compare various HT defense methods fairly by making use of them. We first briefly introduce the features of target NoC and its infected modules in our benchmarks, and then, detail the design of our NoC HTs in a one-by-one manner. Finally, we evaluate our benchmarks through extensive simulations and report the circuit cost of NoC HTs in terms of area and power consumption, as well as their effects on NoC performance. Besides, comprehensive experiments, including functional testing and side channel analysis are performed to assess the stealthiness of our HTs.
Ascia, Giuseppe, Catania, Vincenzo, Monteleone, Salvatore, Palesi, Maurizio, Patti, Davide, Jose, John.
2019.
Networks-on-Chip based Deep Neural Networks Accelerators for IoT Edge Devices. 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :227—234.
The need for performing deep neural network inferences on resource-constrained embedded devices (e.g., Internet of Things nodes) requires specialized architectures to achieve the best trade-off among performance, energy, and cost. One of the most promising architectures in this context is based on massive parallel and specialized cores interconnected by means of a Network-on-Chip (NoC). In this paper, we extensively evaluate NoC-based deep neural network accelerators by exploring the design space spanned by several architectural parameters including, network size, routing algorithm, local memory size, link width, and number of memory interfaces. We show how latency is mainly dominated by the on-chip communication whereas energy consumption is mainly accounted by memory (both on-chip and off-chip). The outcome of the analysis, thus, pushes toward a research line devoted to the optimization of the on-chip communication fabric and the memory subsystem for performance improvement and energy efficiency, respectively.
Chaves, Cesar G., Azad, Siavoosh Payandeh, Sepulveda, Johanna, Hollstein, Thomas.
2019.
Detecting and Mitigating Low-and-Slow DoS Attacks in NoC-based MPSoCs. 2019 14th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC). :82—89.
As Multi-Processor Systems-on-Chip (MPSoCs) permeate the Internet by powering IoT devices, they are exposed to new threats. One major threat is Denial-of-Service (DoS) attacks, which make communication services slow or even unavailable. While mainly studied on desktop and server systems, some DoS attacks on mobile devices and Network-on-Chip (NoC) platforms have also been considered. In the context of NoC-based MPSoC architectures, previous works have explored flooding DoS attacks and their countermeasures, however, these protection techniques are ineffective to mitigate new DoS attacks. Recently, a shift of the network attack paradigm from flooding DoS to Low-and-Slow DoS has been observed. To this end, we present two contributions. First, we demonstrate, for the first time, the impact of Low-and-Slow DoS attacks in NoC environments. Second, we propose a lightweight online monitor able to detect and mitigate these attacks. Results show that our countermeasure is feasible and that it effectively mitigates this new attack. Moreover, since the monitors are placed at the entry points of the network, both, single- and multi-source attacks can be neutralized.
Fan, Renshi, Du, Gaoming, Xu, Pengfei, Li, Zhenmin, Song, Yukun, Zhang, Duoli.
2019.
An Adaptive Routing Scheme Based on Q-learning and Real-time Traffic Monitoring for Network-on-Chip. 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :244—248.
In the Network on Chip (NoC), performance optimization has always been a research focus. Compared with the static routing scheme, dynamical routing schemes can better reduce the data of packet transmission latency under network congestion. In this paper, we propose a dynamical Q-learning routing approach with real-time monitoring of NoC. Firstly, we design a real-time monitoring scheme and the corresponding circuits to record the status of traffic congestion for NoC. Secondly, we propose a novel method of Q-learning. This method finds an optimal path based on the lowest traffic congestion. Finally, we dynamically redistribute network tasks to increase the packet transmission speed and balance the traffic load. Compared with the C-XY routing and DyXY routing, our method achieved improvement in terms of 25.6%-49.5% and 22.9%-43.8%.
Ravikumar, C.P., Swamy, S. Kendaganna, Uma, B.V..
2019.
A hierarchical approach to self-test, fault-tolerance and routing security in a Network-on-Chip. 2019 IEEE International Test Conference India (ITC India). :1—6.
Since the performance of bus interconnects does not scale with the number of processors connected to the bus, chip multiprocessors make use of on-chip networks that implement packet switching and virtual channel flow control to efficiently transport data. In this paper, we consider the test and fault-tolerance aspects of such a network-on-chip (NoC). Past work in this area has addressed the communication efficiency and deadlock-free properties in NoC, but when routing externally received data, aspects of security must be addressed. A malicious denial-of-service attack or a power virus can be launched by a malicious external agent. We propose a two-tier solution to this problem, where a local self-test manager in each processing element runs test algorithms to detect faults in local processing element and its associated physical and virtual channels. At the global level, the health of the NoC is tested using a sorting-based algorithm proposed in this paper. Similarly, we propose to handle fault-tolerance and security concerns in routing at two levels. At the local level, each node is capable of fault-tolerant routing by deflecting packets to an alternate path; when doing so, since a chance of deadlock may be created, the local router must be capable of guestimating a deadlock situation, switch to packet-switching instead of flit-switching and attempt to reroute the packet. At the global level, a routing agent plays the role of gathering fault data and provide the fault-information to nodes that seek this information periodically. Similarly, the agent is capable of detecting malformed packets coming from an external source and prevent injecting such packets into the network, thereby conserving the network bandwidth. The agent also attempts to guess attempts at denial-of-service attacks and power viruses and will reject packets. Use of a two-tier approach helps in keeping the IP modular and reduces their complexity, thereby making them easier to verify.
Krishnamoorthy, Raja, Kalaivaani, P.T., Jackson, Beulah.
2019.
Test methodology for detecting short-channel faults in network on- chip networks using IOT. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :1406—1417.
The NOC Network on chip provides better performance and scalability communication structures point-to-point signal node, shared through bus architecture. Information analysis of method using the IOT termination, as the energy consumed in this regard reduces and reduces the network load but it also displays safety concerns because the valuation data is stored or transmitted to the network in various stages of the node. Using encryption to protect data on the area of network-on-chip Analysis Machine is a way to solve data security issues. We propose a Network on chip based on a combined multicore cluster with special packages for computing-intensive data processing and encryption functionality and support for software, in a tight power envelope for analyzing and coordinating integrated encryption. Programming for regular computing tasks is the challenge of efficient and secure data analysis for IOT end-end applications while providing full-functionality with high efficiency and low power to satisfy the needs of multiple processing applications. Applications provide a substantial parallel, so they can also use NOC's ability. Applications must compose in. This system controls the movement of the packets through the network. As network on chip (NOC) systems become more prevalent in the processing unit. Routers and interconnection networks are the main components of NOC. This system controls the movement of packets over the network. Chip (NOC) networks are very backward for the network processing unit. Guides and Link Networks are critical elements of the NOC. Therefore, these areas require less access and power consumption, so we can better understand environmental and energy transactions. In this manner, a low-area and efficient NOC framework were proposed by removing virtual channels.
J.Y.V., Manoj Kumar, Swain, Ayas Kanta, Kumar, Sudeendra, Sahoo, Sauvagya Ranjan, Mahapatra, Kamalakanta.
2018.
Run Time Mitigation of Performance Degradation Hardware Trojan Attacks in Network on Chip. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :738—743.
Globalization of semiconductor design and manufacturing has led to several hardware security issues. The problem of Hardware Trojans (HT) is one such security issue discussed widely in industry and academia. Adversary design engineer can insert the HT to leak confidential data, cause a denial of service attack or any other intention specific to the design. HT in cryptographic modules and processors are widely discussed. HT in Multi-Processor System on Chips (MPSoC) are also catastrophic, as most of the military applications use MPSoCs. Network on Chips (NoC) are standard communication infrastructure in modern day MPSoC. In this paper, we present a novel hardware Trojan which is capable of inducing performance degradation and denial of service attacks in a NoC. The presence of the Hardware Trojan in a NoC can compromise the crucial details of packets communicated through NoC. The proposed Trojan is triggered by a particular complex bit pattern from input messages and tries to mislead the packets away from the destined addresses. A mitigation method based on bit shuffling mechanism inside the router with a key directly extracted from input message is proposed to limit the adverse effects of the Trojan. The performance of a 4×4 NoC is evaluated under uniform traffic with the proposed Trojan and mitigation method. Simulation results show that the proposed mitigation scheme is useful in limiting the malicious effect of hardware Trojan.
Kornaros, Georgios, Tomoutzoglou, Othon, Coppola, Marcello.
2018.
Hardware-Assisted Security in Electronic Control Units: Secure Automotive Communications by Utilizing One-Time-Programmable Network on Chip and Firewalls. IEEE Micro. 38:63—74.
With emerging smart automotive technologies, vehicle-to-vehicle communications, and software-dominated enhancements for enjoyable driving and advanced driver assistance systems, the complexity of providing guarantees in terms of security, trust, and privacy in a modern cyber-enabled automotive system is significantly elevated. New threat models emerge that require efficient system-level countermeasures. This article introduces synergies between on- and off-chip networking techniques to ensure secure execution environments for electronic control units. The proposed mechanisms consist of hardware firewalling and on-chip network physical isolation, whose mechanisms are combined with system-wide cryptographic techniques in automotive controller area network (CAN)-bus communications to provide authentication and confidentiality.
Reinbrecht, Cezar, Forlin, Bruno, Zankl, Andreas, Sepulveda, Johanna.
2018.
Earthquake — A NoC-based optimized differential cache-collision attack for MPSoCs. 2018 Design, Automation Test in Europe Conference Exhibition (DATE). :648—653.
Multi-Processor Systems-on-Chips (MPSoCs) are a platform for a wide variety of applications and use-cases. The high on-chip connectivity, the programming flexibility, and the reuse of IPs, however, also introduce security concerns. Problems arise when applications with different trust and protection levels share resources of the MPSoC, such as processing units, cache memories and the Network-on-Chip (NoC) communication structure. If a program gets compromised, an adversary can observe the use of these resources and infer (potentially secret) information from other applications. In this work, we explore the cache-based attack by Bogdanov et al., which infers the cache activity of a target program through timing measurements and exploits collisions that occur when the same cache location is accessed for different program inputs. We implement this differential cache-collision attack on the MPSoC Glass and introduce an optimized variant of it, the Earthquake Attack, which leverages the NoC-based communication to increase attack efficiency. Our results show that Earthquake performs well under different cache line and MPSoC configurations, illustrating that cache-collision attacks are considerable threats on MPSoCs.
Lian, Mengyun, Wang, Jian, Lu, Jinzhi.
2018.
A New Hardware Logic Circuit for Evaluating Multi-Processor Chip Security. 2018 Eighth International Conference on Instrumentation Measurement, Computer, Communication and Control (IMCCC). :1571—1574.
NoC (Network-on-Chip) is widely considered and researched by academic communities as a new inter-core interconnection method that replaces the bus. Nowadays, the complexity of on-chip systems is increasing, requiring better communication performance and scalability. Therefore, the optimization of communication performance has become one of the research hotspots. While the NoC is rapidly developing, it is threatened by hardware Trojans inserted during the design or manufacturing processes. This leads to that the attackers can exploit NoC's vulnerability to attack the on-chip systems. To solve the problem, we design and implement a replay-type hardware Trojan inserted into the NoC, aiming to provide a benchmark test set to promote the defense strategies for NoC hardware security. The experiment proves that the power consumption of the designed Trojan accounts for less than one thousandth of the entire NoC power consumption and area. Besides, simulation experiments reveal that this replaytype hardware Trojan can reduce the network throughput.
Biswas, Arnab Kumar.
2018.
Efficient Timing Channel Protection for Hybrid (Packet/Circuit-Switched) Network-on-Chip. IEEE Transactions on Parallel and Distributed Systems. 29:1044—1057.
Continuous development of Network-on-Chip (NoC) enables different types of applications to run efficiently in a Multiprocessor System-on-Chip (MP-SoC). Guaranteed service (GS) can be provided by circuit switching NoC and Best effort service (BES) can be provided by packet switching NoC. A hybrid NoC containing both packet and circuit switching, can provide both types of services to these different applications. But these different applications can be of different security levels and one application can interfere another application's timing characteristics during network transmission. Using this interference, a malicious application can extract secret information from higher security level flows (timing side channel) or two applications can communicate covertly violating the system's security policy (covert timing channel). We propose different mechanisms to protect hybrid routers from timing channel attacks. For design space exploration, we propose three timing channel secure hybrid routers viz. Separate Hybrid (SH), Combined with Separate interface Hybrid (CSH), and Combined Hybrid (CH) routers. Simulation results show that all three routers are secure from timing channel when compared to a conventional hybrid router. Synthesis results show that the area increments compared to a conventional hybrid router are only 7.63, 11.8, and 19.69 percent for SH, CSH, and CH routers respectively. Thus simulation and synthesis results prove the effectiveness of our proposed mechanisms with acceptable area overheads.
Wang, Jihe, Zhang, Meng, Qiu, Meikang.
2018.
A Diffusional Schedule for Traffic Reducing on Network-on-Chip. 2018 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2018 4th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :206—210.
pubcrawl, Network on Chip Security, Scalability, resiliency, resilience, metrics, Tasks on NoC (Network-on-Chip) are less efficient because of long-distance data synchronization. An inefficient task schedule strategy can lead to a large number of remote data accessing that ruins the speedup of parallel execution of multiple tasks. Thus, we propose an energy efficient task schedule to reduce task traffic with a diffusional pattern. The task mapping algorithm can optimize traffic distribution by limit tasks into a small area to reduce NoC activities. Comparing to application-layer optimization, our task mapping can obtain 20% energy saving and 15% latency reduction on average.
Sepulveda, Johanna, Aboul-Hassan, Damian, Sigl, Georg, Becker, Bernd, Sauer, Matthias.
2018.
Towards the formal verification of security properties of a Network-on-Chip router. 2018 IEEE 23rd European Test Symposium (ETS). :1—6.
pubcrawl, Network on Chip Security, Scalability, resiliency, resilience, metrics, Vulnerabilities and design flaws in Network-on-Chip (NoC) routers can be exploited in order to spy, modify and constraint the sensitive communication inside the Multi-Processors Systems-on-Chip (MPSoCs). Although previous works address the NoC threat, finding secure and efficient solutions to verify the security is still a challenge. In this work, we propose for the first time a method to formally verify the correctness and the security properties of a NoC router in order to provide the proper communication functionality and to avoid NoC attacks. We present a generalized verification flow that proves a wide set of implementation-independent security-related properties to hold. We employ unbounded model checking techniques to account for the highly-sequential behaviour of the NoC systems. The evaluation results demonstrate the feasibility of our approach by presenting verification results of six different NoC routing architectures demonstrating the vulnerabilities of each design.
Lebiednik, Brian, Abadal, Sergi, Kwon, Hyoukjun, Krishna, Tushar.
2018.
Architecting a Secure Wireless Network-on-Chip. 2018 Twelfth IEEE/ACM International Symposium on Networks-on-Chip (NOCS). :1—8.
With increasing integration in SoCs, the Network-on-Chip (NoC) connecting cores and accelerators is of paramount importance to provide low-latency and high-throughput communication. Due to limits to scaling of electrical wires in terms of energy and delay, especially for long multi-mm distances on-chip, alternate technologies such as Wireless Network-on-Chip (WNoC) have shown promise. WNoCs can provide low-latency one-hop broadcasts across the entire chip and can augment point-to-point multi-hop signaling over traditional wired NoCs. Thus, there has been a recent surge in research demonstrating the performance and energy benefits of WNoCs. However, little to no work has studied the additional security and fault tolerance challenges that are unique to WNoCs. In this work, we study potential threats related to denial-of-service, spoofing, and eavesdropping attacks in WNoCs, due to malicious hardware trojans or faulty wireless components. We introduce Prometheus, a dropin solution inside the network interface that provides protection from all three attacks, while adhering to the strict area, power and latency constraints of on-chip systems.