Visible to the public Biblio

Found 131 results

Filters: Keyword is blockchains  [Clear All Filters]
2023-02-17
Kumar, Rahul H, Subramanian, G Muthu.  2022.  Multi-Robot Security System based on Robot Operating System and Hybridized Blockchain Model. 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT). :1–6.
Multi robot systems are defined as a collection of two or more robots that are capable of working autonomously while coordinating with each other. Three challenges emerge while designing any multi robot system. The robots have to coordinate their path planning or trajectory planning in order to avoid collision during the course of navigation, while collaborating tasks with other robots to achieve a specific end goal for the system. The other challenge, which is the focus of this paper, is the security of the entire multi robot system. Since robots have to coordinate with each other, any one of them being malicious due to any kind of security threat, can lead to a chain reaction that may compromise the entire system. Such security threats can be fatal if not dealt with immediately. This paper proposes the use of a Hybridized Blockchain Model (HBM) to identify such security threats and take necessary actions in real time so that the system does not encounter any catastrophic failure. The proposed security architecture uses ROS (Robot operating system) to decentralize the information collected by robot clients and HBM to monitor the clients and take necessary real time actions.
2023-02-13
[Anonymous].  2022.  A Trust Based DNS System to Prevent Eclipse Attack on Blockchain Networks. 2022 15th International Conference on Security of Information and Networks (SIN). :01—08.
The blockchain network is often considered a reliable and secure network. However, some security attacks, such as eclipse attacks, have a significant impact on blockchain networks. In order to perform an eclipse attack, the attacker must be able to control enough IP addresses. This type of attack can be mitigated by blocking incoming connections. Connected machines may only establish outbound connections to machines they trust, such as those on a whitelist that other network peers maintain. However, this technique is not scalable since the solution does not allow nodes with new incoming communications to join the network. In this paper, we propose a scalable and secure trust-based solution against eclipse attacks with a peer-selection strategy that minimizes the probability of eclipse attacks from nodes in the network by developing a trust point. Finally, we experimentally analyze the proposed solution by creating a network simulation environment. The analysis results show that the proposed solution reduces the probability of an eclipse attack and has a success rate of over 97%.
2023-02-03
Li, Weijian, Li, Chengyan, Xu, Qiwei, Yin, Keting.  2022.  A Novel Distributed CA System Based on Blockchain. 2022 IEEE 10th International Conference on Information, Communication and Networks (ICICN). :710–716.
In the PKI-CA system with a traditional trust model based on trust chain and centralized private key management, there are some problems with issuing certificates illegally, denying issued certificates, tampering with issuance log, and leaking certificate private key due to the excessive power of a single CA. A novel distributed CA system based on blockchain was constructed to solve the problems. The system applied blockchain and smart contract to coordinate the certificate issuing process, and stored the issuing process logs and information used to verify certificates on the blockchain. It guaranteed the non-tamperability and non-repudiation of logs and information. Aiming at the disadvantage of easy leakage of private keys in centralized management mode, the system used the homomorphism of elliptic encryption algorithm, CPK and transformation matrix to generate and store user private keys safely and distributively. Experimental analysis showed that the system can not only overcome the drawbacks of the traditional PKI-CA system, but also issue certificates quickly and save as much storage as possible to store certificate private keys.
Chen, Shengjian.  2022.  Trustworthy Internet Based on Generalized Blockchain. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :5–12.
It is the key to the Internet's expansion of social and economic functions by ensuring the credibility of online users' identities and behaviors while taking into account privacy protection. Public Key Infrastructure (PKI) and blockchain technology have provided ways to achieve credibility from different perspectives. Based on these two technologies, we attempt to generalize people's offline activities to online ones with our proposed model, Atom and Molecule. We then present the strict definition of trustworthy system and the trustworthy Internet. The definition of Generalized Blockchain and its practical implementation are provided as well.
Markelon, Sam A., True, John.  2022.  The DecCert PKI: A Solution to Decentralized Identity Attestation and Zooko’s Triangle. 2022 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS). :74–82.
We propose DecCert, a decentralized public key infrastructure designed as a smart contract that solves the problem of identity attestation on public blockchains. Our system allows an individual to bind an identity to a public blockchain address. Once a claim of identity is made by an individual, other users can choose to verify the attested identity based on the evidence presented by an identity claim maker by staking cryptocurrency in the DecCert smart contract. Increasing levels of trust are naturally built based upon the amount staked and the duration the collateral is staked for. This mechanism replaces the usual utilization of digital signatures in a traditional hierarchical certificate authority model or the web of trust model to form a publicly verifiable decentralized stake of trust model. We also present a novel solution to the certificate revocation problem and implement our solution on the Ethereum blockchain. Further, we show that our design solves Zooko’s triangle as defined for public key infrastructure deployments.
Patil, Vishwas T., Shyamasundar, R.K..  2022.  Evolving Role of PKI in Facilitating Trust. 2022 IEEE International Conference on Public Key Infrastructure and its Applications (PKIA). :1–7.
A digital certificate is by far the most widely used artifact to establish secure electronic communication over the Internet. It certifies to its user that the public key encapsulated in it is associated with the subject of the certificate. A Public Key Infrastructure (PKI) is responsible to create, store, distribute, and revoke digital certificates. To establish a secure communication channel two unfamiliar entities rely on a common certificate issuer (a part of PKI) that vouches for both entities' certificates - thus authenticating each other via public keys listed in each other's certificates. Therefore, PKIs act as a trusted third party for two previously unfamiliar entities. Certificates are static data structures, their revocation status must be checked before usage; this step inadvertently involves a PKI for every secure channel establishment - leading to privacy violations of relying parties. As PKIs act as trust anchors for their subjects, any inadvertent event or malfeasance in PKI setup breaches the trust relationship leading to identity theft. Alternative PKI trust models, like PGP and SPKI, have been proposed but with limited deployment. With several retrofitting amendments to the prevalent X.509 standard, the standard has been serving its core objective of entity authentication but with modern requirements of contextual authentication, it is falling short to accommodate the evolving requirements. With the advent of blockchain as a trust management protocol, the time has come to rethink flexible alternatives to PKI core functionality; keeping in mind the modern-day requirements of contextual authentication-cum-authorization, weighted trust anchors, privacy-preservation, usability, and cost-efficient key management. In this paper, we assess this technology's complementary role in modern-day evolving security requirements. We discuss the feasibility of re-engineering PKIs with the help of blockchains, and identity networks.
Dong, Siyuan, Fan, Zhong.  2022.  Cybersecurity Threats Analysis and Management for Peer-to-Peer Energy Trading. 2022 IEEE 7th International Energy Conference (ENERGYCON). :1–6.
The distributed energy resources (DERs) have significantly stimulated the development of decentralized energy system and changed the way how the energy system works. In recent years, peer-to-peer (P2P) trading has drawn attention as a promising alternative for prosumers to engage with the energy market more actively, particular by using the emerging blockchain technology. Blockchain can securely hold critical information and store data in blocks linking with chain, providing a desired platform for the P2P energy trading. This paper provides a detailed description of blockchain-enabled P2P energy trading, its essential components, and how it can be implemented within the local energy market An analysis of potential threats during blockchain-enabled P2P energy trading is also performed, which subsequently results in a list of operation and privacy requirements suggested to be implemented in the local energy market.
Ahmed, Shamim, Biswas, Milon, Hasanuzzaman, Md., Nayeen Mahi, Md. Julkar, Ashraful Islam, Md., Chaki, Sudipto, Gaur, Loveleen.  2022.  A Secured Peer-to-Peer Messaging System Based on Blockchain. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :332–337.
Nowadays, the messaging system is one of the most popular mobile applications, and therefore the authentication between clients is essential. Various kinds of such mobile applications are using encryption-based security protocols, but they are facing many security threat issues. It clearly defines the necessity for a trustful security procedure. Therefore, a blockchain-based messaging system could be an alternative to this problem. That is why, we have developed a secured peer-to-peer messaging system supported by blockchain. This proposed mechanism provides data security among the users. In a blockchain-based framework, all the information can be verified and controlled automatically and all the transactions are recorded that have been created already. In our paper, we have explained how the users can communicate through a blockchain-based messaging system that can maintain a secured network. We explored why blockchain would improve communication security in this post, and we proposed a model architecture for blockchain-based messaging that retains the performance and security of data stored on the blockchain. Our proposed architecture is completely decentralized and enables users to send and receive messages in an acceptable and secure manner.
Sarapan, Waranyu, Boonrakchat, Nonthakorn, Paudel, Ashok, Booraksa, Terapong, Boonraksa, Promphak, Marungsri, Boonruang.  2022.  Optimal Peer-to-Peer Energy Trading by Applying Blockchain to Islanded Microgrid Considering V2G. 2022 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). :1–4.
Energy trading in small groups or microgrids is interesting to study. The energy market may overgrow in the future, so accessing the energy market by small prosumers may not be difficult anymore. This paper has modeled a decentralized P2P energy trading and exchange system in a microgrid group. The Islanded microgrid system is simulated to create a small energy producer and consumer trading situation. The simulation results show the increasing energy transactions and profit when including V2G as an energy storage device. In addition, blockchain is used for system security because a peer-to-peer marketplace has no intermediary control.
Khoury, David, Balian, Patrick, Kfoury, Elie.  2022.  Implementation of Blockchain Domain Control Verification (B-DCV). 2022 45th International Conference on Telecommunications and Signal Processing (TSP). :17–22.
Security in the communication systems rely mainly on a trusted Public Key Infrastructure (PKI) and Certificate Authorities (CAs). Besides the lack of automation, the complexity and the cost of assigning a signed certificate to a device, several allegations against CAs have been discovered, which has created trust issues in adopting this standard model for secure systems. The automation of the servers certificate assignment was achieved by the Automated Certificate Management Environment (ACME) method, but without confirming the trust of assigned certificate. This paper presents a complete tested and implemented solution to solve the trust of the Certificates provided to the servers by using the blockchain platform for certificate validation. The Blockchain network provides an immutable data store, holding the public keys of all domain names, while resolving the trust concerns by applying an automated Blockchain-based Domain Control Validation (B-DCV) for the server and client server verification. The evaluation was performed on the Ethereum Rinkeby testnet adopting the Proof of Authority (PoA) consensus algorithm which is an improved version of Proof of Stake (Po \$S\$) applied on Ethereum 2.0 providing superior performance compared to Ethereum 1.0.
Ayaz, Ferheen, Sheng, Zhengguo, Ho, Ivan Weng-Hei, Tiany, Daxin, Ding, Zhiguo.  2022.  Blockchain-enabled FD-NOMA based Vehicular Network with Physical Layer Security. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). :1–6.
Vehicular networks are vulnerable to large scale attacks. Blockchain, implemented upon application layer, is recommended as one of the effective security and privacy solutions for vehicular networks. However, due to an increasing complexity of connected nodes, heterogeneous environment and rising threats, a robust security solution across multiple layers is required. Motivated by the Physical Layer Security (PLS) which utilizes physical layer characteristics such as channel fading to ensure reliable and confidential transmission, in this paper we analyze the impact of PLS on a blockchain-enabled vehicular network with two types of physical layer attacks, i.e., jamming and eavesdropping. Throughout the analysis, a Full Duplex Non-Orthogonal Multiple Access (FD-NOMA) based vehicle-to-everything (V2X) is considered to reduce interference caused by jamming and meet 5G communication requirements. Simulation results show enhanced goodput of a blockckchain enabled vehicular network integrated with PLS as compared to the same solution without PLS.
ISSN: 2577-2465
2023-01-20
Liang, Xiao, An, Ningyu, Li, Da, Zhang, Qiang, Wang, Ruimiao.  2022.  A Blockchain and ABAC Based Data Access Control Scheme in Smart Grid. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :52—55.
In the smart grid, the sharing of power data among various energy entities can make the data play a higher value. However, there may be unauthorized access while sharing data, which makes many entities unwilling to share their data to prevent data leakage. Based on blockchain and ABAC (Attribute-based Access Control) technology, this paper proposes an access control scheme, so that users can achieve fine-grained access control of their data when sharing them. The solution uses smart contract to achieve automated and reliable policy evaluation. IPFS (Interplanetary File System) is used for off-chain distributed storage to share the storage pressure of blockchain and guarantee the reliable storage of data. At the same time, all processes in the system are stored in the blockchain, ensuring the accountability of the system. Finally, the experiment proves the feasibility of the proposed scheme.
Reijsbergen, Daniël, Maw, Aung, Venugopalan, Sarad, Yang, Dianshi, Tuan Anh Dinh, Tien, Zhou, Jianying.  2022.  Protecting the Integrity of IoT Sensor Data and Firmware With A Feather-Light Blockchain Infrastructure. 2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1–9.
Smart cities deploy large numbers of sensors and collect a tremendous amount of data from them. For example, Advanced Metering Infrastructures (AMIs), which consist of physical meters that collect usage data about public utilities such as power and water, are an important building block in a smart city. In a typical sensor network, the measurement devices are connected through a computer network, which exposes them to cyber attacks. Furthermore, the data is centrally managed at the operator’s servers, making it vulnerable to insider threats.Our goal is to protect the integrity of data collected by large-scale sensor networks and the firmware in measurement devices from cyber attacks and insider threats. To this end, we first develop a comprehensive threat model for attacks against data and firmware integrity, which can target any of the stakeholders in the operation of the sensor network. Next, we use our threat model to analyze existing defense mechanisms, including signature checks, remote firmware attestation, anomaly detection, and blockchain-based secure logs. However, the large size of the Trusted Computing Base and a lack of scalability limit the applicability of these existing mechanisms. We propose the Feather-Light Blockchain Infrastructure (FLBI) framework to address these limitations. Our framework leverages a two-layer architecture and cryptographic threshold signature chains to support large networks of low-capacity devices such as meters and data aggregators. We have fully implemented the FLBI’s end-to-end functionality on the Hyperledger Fabric and private Ethereum blockchain platforms. Our experiments show that the FLBI is able to support millions of end devices.
Boiarkin, Veniamin, Rajarajan, Muttukrishnan.  2022.  A novel Blockchain-Based Data-Aggregation scheme for Edge-Enabled Microgrid of Prosumers. 2022 Fourth International Conference on Blockchain Computing and Applications (BCCA). :63—68.

The concept of a microgrid has emerged as a promising solution for the management of local groups of electricity consumers and producers. The use of end-users' energy usage data can help in increasing efficient operation of a microgrid. However, existing data-aggregation schemes for a microgrid suffer different cyber attacks and do not provide high level of accuracy. This work aims at designing a privacy-preserving data-aggregation scheme for a microgrid of prosumers that achieves high level of accuracy, thereby benefiting to the management and control of a microgrid. First, a novel smart meter readings data protection mechanism is proposed to ensure privacy of prosumers by hiding the real energy usage data from other parties. Secondly, a blockchain-based data-aggregation scheme is proposed to ensure privacy of the end-users, while achieving high level of accuracy in terms of the aggregated data. The proposed data-aggregation scheme is evaluated using real smart meter readings data from 100 prosumers. The results show that the proposed scheme ensures prosumers' privacy and achieves high level of accuracy, while it is secure against eavesdropping and man-in-the-middle cyber attacks.

Núñez, Ivonne, Cano, Elia, Rovetto, Carlos, Ojo-Gonzalez, Karina, Smolarz, Andrzej, Saldana-Barrios, Juan Jose.  2022.  Key technologies applied to the optimization of smart grid systems based on the Internet of Things: A Review. 2022 V Congreso Internacional en Inteligencia Ambiental, Ingeniería de Software y Salud Electrónica y Móvil (AmITIC). :1—8.
This article describes an analysis of the key technologies currently applied to improve the quality, efficiency, safety and sustainability of Smart Grid systems and identifies the tools to optimize them and possible gaps in this area, considering the different energy sources, distributed generation, microgrids and energy consumption and production capacity. The research was conducted with a qualitative methodological approach, where the literature review was carried out with studies published from 2019 to 2022, in five (5) databases following the selection of studies recommended by the PRISMA guide. Of the five hundred and four (504) publications identified, ten (10) studies provided insight into the technological trends that are impacting this scenario, namely: Internet of Things, Big Data, Edge Computing, Artificial Intelligence and Blockchain. It is concluded that to obtain the best performance within Smart Grids, it is necessary to have the maximum synergy between these technologies, since this union will enable the application of advanced smart digital technology solutions to energy generation and distribution operations, thus allowing to conquer a new level of optimization.
2023-01-13
Luo, Xinyi, Xu, Zhuo, Xue, Kaiping, Jiang, Qiantong, Li, Ruidong, Wei, David.  2022.  ScalaCert: Scalability-Oriented PKI with Redactable Consortium Blockchain Enabled "On-Cert" Certificate Revocation. 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS). :1236–1246.
As the voucher for identity, digital certificates and the public key infrastructure (PKI) system have always played a vital role to provide the authentication services. In recent years, with the increase in attacks on traditional centralized PKIs and the extensive deployment of blockchains, researchers have tried to establish blockchain-based secure decentralized PKIs and have made significant progress. Although blockchain enhances security, it brings new problems in scalability due to the inherent limitations of blockchain’s data structure and consensus mechanism, which become much severe for the massive access in the era of 5G and B5G. In this paper, we propose ScalaCert to mitigate the scalability problems of blockchain-based PKIs by utilizing redactable blockchain for "on-cert" revocation. Specifically, we utilize the redactable blockchain to record revocation information directly on the original certificate ("on-cert") and remove additional data structures such as CRL, significantly reducing storage overhead. Moreover, the combination of redactable and consortium blockchains brings a new kind of attack called deception of versions (DoV) attack. To defend against it, we design a random-block-node-check (RBNC) based freshness check mechanism. Security and performance analyses show that ScalaCert has sufficient security and effectively solves the scalability problem of the blockchain-based PKI system.
Upadhyaya, Santosh Kumar, Thangaraju, B..  2022.  A Novel Method for Trusted Audit and Compliance for Network Devices by Using Blockchain. 2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). :1—6.

The Network Security and Risk (NSR) management team in an enterprise is responsible for maintaining the network which includes switches, routers, firewalls, controllers, etc. Due to the ever-increasing threat of capitalizing on the vulnerabilities to create cyber-attacks across the globe, a major objective of the NSR team is to keep network infrastructure safe and secure. NSR team ensures this by taking proactive measures of periodic audits of network devices. Further external auditors are engaged in the audit process. Audit information is primarily stored in an internal database of the enterprise. This generic approach could result in a trust deficit during external audits. This paper proposes a method to improve the security and integrity of the audit information by using blockchain technology, which can greatly enhance the trust factor between the auditors and enterprises.

2023-01-06
Hai, Xuesong, Liu, Jing.  2022.  PPDS: Privacy Preserving Data Sharing for AI applications Based on Smart Contracts. 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC). :1561—1566.
With the development of artificial intelligence, the need for data sharing is becoming more and more urgent. However, the existing data sharing methods can no longer fully meet the data sharing needs. Privacy breaches, lack of motivation and mutual distrust have become obstacles to data sharing. We design a privacy-preserving, decentralized data sharing method based on blockchain smart contracts, named PPDS. To protect data privacy, we transform the data sharing problem into a model sharing problem. This means that the data owner does not need to directly share the raw data, but the AI model trained with such data. The data requester and the data owner interact on the blockchain through a smart contract. The data owner trains the model with local data according to the requester's requirements. To fairly assess model quality, we set up several model evaluators to assess the validity of the model through voting. After the model is verified, the data owner who trained the model will receive reward in return through a smart contract. The sharing of the model avoids direct exposure of the raw data, and the reasonable incentive provides a motivation for the data owner to share the data. We describe the design and workflow of our PPDS, and analyze the security using formal verification technology, that is, we use Coloured Petri Nets (CPN) to build a formal model for our approach, proving its security through simulation execution and model checking. Finally, we demonstrate effectiveness of PPDS by developing a prototype with its corresponding case application.
Salama, Ramiz, Al-Turjman, Fadi.  2022.  AI in Blockchain Towards Realizing Cyber Security. 2022 International Conference on Artificial Intelligence in Everything (AIE). :471—475.
Blockchain and artificial intelligence are two technologies that, when combined, have the ability to help each other realize their full potential. Blockchains can guarantee the accessibility and consistent admittance to integrity safeguarded big data indexes from numerous areas, allowing AI systems to learn more effectively and thoroughly. Similarly, artificial intelligence (AI) can be used to offer new consensus processes, and hence new methods of engaging with Blockchains. When it comes to sensitive data, such as corporate, healthcare, and financial data, various security and privacy problems arise that must be properly evaluated. Interaction with Blockchains is vulnerable to data credibility checks, transactional data leakages, data protection rules compliance, on-chain data privacy, and malicious smart contracts. To solve these issues, new security and privacy-preserving technologies are being developed. AI-based blockchain data processing, either based on AI or used to defend AI-based blockchain data processing, is emerging to simplify the integration of these two cutting-edge technologies.
Dhiman, Bhavya, Bose S, Rubin.  2022.  A Reliable, Secure and Efficient Decentralised Conditional of KYC Verification System: A Blockchain Approach. 2022 International Conference on Edge Computing and Applications (ICECAA). :564—570.
KYC or Know Your Customer is the procedure to verify the individuality of its consumers & evaluating the possible dangers of illegitimate trade relations. A few problems with the existing KYC manual process are that it is less secure, time-consuming and expensive. With the advent of Blockchain technology, its structures such as consistency, security, and geographical diversity make them an ideal solution to such problems. Although marketing solutions such as KYC-chain.co, K-Y-C. The legal right to enable blockchain-based KYC authentication provides a way for documents to be verified by a trusted network participant. This project uses an ETHereum based Optimised KYC Block-chain system with uniform A-E-S encryption and compression built on the LZ method. The system publicly verifies a distributed encryption, is protected by cryptography, operates by pressing the algorithm and is all well-designed blockchain features. The suggested scheme is a novel explanation based on Distributed Ledger Technology or Blockchain technology that would cut KYC authentication process expenses of organisations & decrease the regular schedule for completion of the procedure whilst becoming easier for clients. The largest difference in the system in traditional methods is the full authentication procedure is performed in just no time for every client, regardless of the number of institutions you desire to be linked to. Furthermore, since DLT is employed, validation findings may be securely distributed to consumers, enhancing transparency. Based on this method, a Proof of Concept (POC) is produced with Ethereum's API, websites as endpoints and the android app as the front office, recognising the viability and efficacy of this technique. Ultimately, this strategy enhances consumer satisfaction, lowers budget overrun & promotes transparency in the customer transport network.
2023-01-05
Ranganathan, Sathishkumar, Mariappan, Muralindran, Muthukaruppan, Karthigayan.  2022.  Efficient Distributed Consensus Algorithm For Swarm Robotic. 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET). :1–6.
Swarm robotics is a network based multi-device system designed to achieve shared objectives in a synchronized way. This system is widely used in industries like farming, manufacturing, and defense applications. In recent implementations, swarm robotics is integrated with Blockchain based networks to enhance communication, security, and decentralized decision-making capabilities. As most of the current blockchain applications are based on complex consensus algorithms, every individual robot in the swarm network requires high computing power to run these complex algorithms. Thus, it is a challenging task to achieve consensus between the robots in the network. This paper will discuss the details of designing an effective consensus algorithm that meets the requirements of swarm robotics network.
Bansal, Lakshya, Chaurasia, Shefali, Sabharwal, Munish, Vij, Mohit.  2022.  Blockchain Integration with end-to-end traceability in the Food Supply Chain. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :1152—1156.
Food supply chain is a complex but necessary food production arrangement needed by the global community to maintain sustainability and food security. For the past few years, entities being a part of the food processing system have usually taken food supply chain for granted, they forget that just one disturbance in the chain can lead to poisoning, scarcity, or increased prices. This continually affects the vulnerable among society, including impoverished individuals and small restaurants/grocers. The food supply chain has been expanded across the globe involving many more entities, making the supply chain longer and more problematic making the traditional logistics pattern unable to match the expectations of customers. Food supply chains involve many challenges like lack of traceability and communication, supply of fraudulent food products and failure in monitoring warehouses. Therefore there is a need for a system that ensures authentic information about the product, a reliable trading mechanism. In this paper, we have proposed a comprehensive solution to make the supply chain consumer centric by using Blockchain. Blockchain technology in the food industry applies in a mindful and holistic manner to verify and certify the quality of food products by presenting authentic information about the products from the initial stages. The problem formulation, simulation and performance analysis are also discussed in this research work.
Swain, Satyananda, Patra, Manas Ranjan.  2022.  A Distributed Agent-Oriented Framework for Blockchain-Enabled Supply Chain Management. 2022 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS). :1—7.
Blockchain has emerged as a leading technological innovation because of its indisputable safety and services in a distributed setup. Applications of blockchain are rising covering varied fields such as financial transactions, supply chains, maintenance of land records, etc. Supply chain management is a potential area that can immensely benefit from blockchain technology (BCT) along with smart contracts, making supply chain operations more reliable, safer, and trustworthy for all its stakeholders. However, there are numerous challenges such as scalability, coordination, and safety-related issues which are yet to be resolved. Multi-agent systems (MAS) offer a completely new dimension for scalability, cooperation, and coordination in distributed culture. MAS consists of a collection of automated agents who can perform a specific task intelligently in a distributed environment. In this work, an attempt has been made to develop a framework for implementing a multi-agent system for a large-scale product manufacturing supply chain with blockchain technology wherein the agents communicate with each other to monitor and organize supply chain operations. This framework eliminates many of the weaknesses of supply chain management systems. The overall goal is to enhance the performance of SCM in terms of transparency, traceability, trustworthiness, and resilience by using MAS and BCT.
Miyamae, Takeshi, Nishimaki, Satoru, Nakamura, Makoto, Fukuoka, Takeru, Morinaga, Masanobu.  2022.  Advanced Ledger: Supply Chain Management with Contribution Trails and Fair Reward Distribution. 2022 IEEE International Conference on Blockchain (Blockchain). :435—442.
We have several issues in most current supply chain management systems. Consumers want to spend money on environmentally friendly products, but they are seldomly informed of the environmental contributions of the suppliers. Meanwhile, each supplier seeks to recover the costs for the environmental contributions to re-invest them into further contributions. Instead, in most current supply chains, the reward for each supplier is not clearly defined and fairly distributed. To address these issues, we propose a supply-chain contribution management platform for fair reward distribution called ‘Advanced Ledger.’ This platform records suppliers' environ-mental contribution trails, receives rewards from consumers in exchange for trail-backed fungible tokens, and fairly distributes the rewards to each supplier based on the contribution trails. In this paper, we overview the architecture of Advanced Ledger and 11 technical features, including decentralized autonomous organization (DAO) based contribution verification, contribution concealment, negative-valued tokens, fair reward distribution, atomic rewarding, and layer-2 rewarding. We then study the requirements and candidates of the smart contract platforms for implementing Advanced Ledger. Finally, we introduce a use case called ‘ESG token’ built on the Advanced Ledger architecture.
2022-12-01
Kamhoua, Georges, Bandara, Eranga, Foytik, Peter, Aggarwal, Priyanka, Shetty, Sachin.  2021.  Resilient and Verifiable Federated Learning against Byzantine Colluding Attacks. 2021 Third IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :31–40.
Federated Learning (FL) is a multiparty learning computing approach that can aid privacy-preservation machine learning. However, FL has several potential security and privacy threats. First, the existing FL requires a central coordinator for the learning process which brings a single point of failure and trust issues for the shared trained model. Second, during the learning process, intentionally unreliable model updates performed by Byzantine colluding parties can lower the quality and convergence of the shared ML models. Therefore, discovering verifiable local model updates (i.e., integrity or correctness) and trusted parties in FL becomes crucial. In this paper, we propose a resilient and verifiable FL algorithm based on a reputation scheme to cope with unreliable parties. We develop a selection algorithm for task publisher and blockchain-based multiparty learning architecture approach where local model updates are securely exchanged and verified without the central party. We also proposed a novel auditing scheme to ensure our proposed approach is resilient up to 50% Byzantine colluding attack in a malicious scenario.