Visible to the public Biblio

Found 119 results

Filters: Keyword is Fingerprint recognition  [Clear All Filters]
2020-03-02
Babkin, Sergey, Epishkina, Anna.  2019.  Authentication Protocols Based on One-Time Passwords. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1794–1798.
Nowadays one-time passwords are used in a lot of areas of information technologies including e-commerce. A few vulnerabilities in authentication protocols based on one-time passwords are widely known. In current work, we analyze authentication protocols based on one-time passwords and their vulnerabilities. Both simple and complicated protocols which are implementing cryptographic algorithms are reviewed. For example, an analysis of relatively old Lamport's hash-chain protocol is provided. At the same time, we examine HOTP and TOTP protocols which are actively used nowadays. The main result of the work are conclusions about the security of reviewed protocols based on one-time passwords.
Ibrokhimov, Sanjar, Hui, Kueh Lee, Abdulhakim Al-Absi, Ahmed, lee, hoon jae, Sain, Mangal.  2019.  Multi-Factor Authentication in Cyber Physical System: A State of Art Survey. 2019 21st International Conference on Advanced Communication Technology (ICACT). :279–284.
Digital Multifactor authentication is one of the best ways to make secure authentication. It covers many different areas of a Cyber-connected world, including online payments, communications, access right management, etc. Most of the time, Multifactor authentication is little complex as it require extra step from users. With two-factor authentication, along with the user-ID and password, user also needs to enter a special code which they normally receive by short message service or some special code which they got in advance. This paper will discuss the evolution from single authentication to Multi-Factor Authentication (MFA) starting from Single-Factor Authentication (SFA) and through Two-Factor Authentication (2FA). In addition, this paper presents five high-level categories of features of user authentication in the gadget-free world including security, privacy, and usability aspects. These are adapted and extended from earlier research on web authentication methods. In conclusion, this paper gives future research directions and open problems that stem from our observations.
2020-02-17
Nouichi, Douae, Abdelsalam, Mohamed, Nasir, Qassim, Abbas, Sohail.  2019.  IoT Devices Security Using RF Fingerprinting. 2019 Advances in Science and Engineering Technology International Conferences (ASET). :1–7.
Internet of Things (IoT) devices industry is rapidly growing, with an accelerated increase in the list of manufacturers offering a wide range of smart devices selected to enhance end-users' standard of living. Security remains an after-thought in these devices resulting in vulnerabilities. While there exists a cryptographic protocol designed to solve such authentication problem, the computational complexity of cryptographic protocols and scalability problems make almost all cryptography-based authentication protocols impractical for IoT. Wireless RFF (Radio Frequency Fingerprinting) comes as a physical layer-based security authentication method that improves wireless security authentication, which is especially useful for the power and computing limited devices. As a proof-of-concept, this paper proposes a universal SDR (software defined Radio)-based inexpensive implementation intended to sense emitted wireless signals from IoT devices. Our approach is validated by extracting mobile phone signal bursts under different user-dedicated modes. The proposed setup is well adapted to accurately capture signals from different telecommunication standards. To ensure a unique identification of IoT devices, this paper also provides an optimum set of features useful to generate the device identity fingerprint.
2020-02-10
Dostálek, Libor.  2019.  Multi-Factor Authentication Modeling. 2019 9th International Conference on Advanced Computer Information Technologies (ACIT). :443–446.
The work defines a multi-factor authentication model in case the application supports multiple authentication factors. The aim of this modeling is to find acceptable authentication methods sufficient to access specifically qualified information. The core of the proposed model is risk-based authentication. Results of simulations of some key scenarios often used in practice are also presented.
2019-11-04
Altay, Osman, Ulas, Mustafa.  2018.  Location Determination by Processing Signal Strength of Wi-Fi Routers in the Indoor Environment with Linear Discriminant Classifier. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1-4.

Location determination in the indoor areas as well as in open areas is important for many applications. But location determination in the indoor areas is a very difficult process compared to open areas. The Global Positioning System (GPS) signals used for position detection is not effective in the indoor areas. Wi-Fi signals are a widely used method for localization detection in the indoor area. In the indoor areas, localization can be used for many different purposes, such as intelligent home systems, locations of people, locations of products in the depot. In this study, it was tried to determine localization for with the classification method for 4 different areas by using Wi-Fi signal values obtained from different routers for indoor location determination. Linear discriminant analysis (LDA) classification was used for classification. In the test using 10k fold cross-validation, 97.2% accuracy value was calculated.

2019-10-15
Alzahrani, A. A. K., Alfosail, M. K., Aldossary, M. M., Almuhaidib, M. M., Alqahtani, S. T., Saqib, N. A., Alissa, K. A., Almubairik, N. A..  2018.  Secure Sign: Signing Document Online. 2018 21st Saudi Computer Society National Computer Conference (NCC). :1–3.
The use of technology is increasing nowadays. On the other hand, most governments and legal offices still do not use technology to implement simple things such as signing a document because they still rely on face-to-face to ensure the authenticity of the signatory. Several challenges may come while signing documents online such as, how to authenticate the signing parties and how to ensure that signing parties will not deny their signatures in future? These challenges are addressed by SecureSign system that attach the signatories' identity with their fingerprints. SecureSign was implemented in C\# and Microsoft SQL Server Management Studio, with integrating fingerprint reader and electronic signature tablet. The SecureSign system achieves the main security goals which are confidentiality, authentication, non-repudiation and integrity. It will have an impact on society and business environments positively as it will reduce fraud and forgery, and help in controlling the process of signing either in contracts or confidential papers. SecureSign have Successfully achieved confidentiality by encrypting data using AES algorithm, authentication by using user fingerprint, nonrepudiation by associating the user ID with his fingerprint, and integrity by embedding QR barcode within the document and hashing its content.
2019-09-09
Zhou, X., Lu, Y., Wang, Y., Yan, X..  2018.  Overview on Moving Target Network Defense. 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC). :821–827.
Moving Target Defense (MTD) is a research hotspot in the field of network security. Moving Target Network Defense (MTND) is the implementation of MTD at network level. Numerous related works have been proposed in the field of MTND. In this paper, we focus on the scope and area of MTND, systematically present the recent representative progress from four aspects, including IP address and port mutation, route mutation, fingerprint mutation and multiple mutation, and put forward the future development directions. Several new perspectives and elucidations on MTND are rendered.
2019-05-20
F, A. K., Mhaibes, H. Imad.  2018.  A New Initial Authentication Scheme for Kerberos 5 Based on Biometric Data and Virtual Password. 2018 International Conference on Advanced Science and Engineering (ICOASE). :280–285.

Kerberos is a third party and widely used authentication protocol, in which it enables computers to connect securely using a single sign-on over an insecure channel. It proves the identity of clients and encrypts all the communications between them to ensure data privacy and integrity. Typically, Kerberos composes of three communication phases to establish a secure session between any two clients. The authentication is based on a password-based scheme, in which it is a secret long-term key shared between the client and the Kerberos. Therefore, Kerberos suffers from a password-guessing attack, the main drawback of Kerberos. In this paper, we overcome this limitation by modifying the first initial phase using the virtual password and biometric data. In addition, the proposed protocol provides a strong authentication scenario against multiple types of attacks.

2019-05-01
Sowah, R., Ofoli, A., Koumadi, K., Osae, G., Nortey, G., Bempong, A. M., Agyarkwa, B., Apeadu, K. O..  2018.  Design and Implementation of a Fire Detection andControl System with Enhanced Security and Safety for Automobiles Using Neuro-Fuzzy Logic. 2018 IEEE 7th International Conference on Adaptive Science Technology (ICAST). :1-8.

Automobiles provide comfort and mobility to owners. While they make life more meaningful they also pose challenges and risks in their safety and security mechanisms. Some modern automobiles are equipped with anti-theft systems and enhanced safety measures to safeguard its drivers. But at times, these mechanisms for safety and secured operation of automobiles are insufficient due to various mechanisms used by intruders and car thieves to defeat them. Drunk drivers cause accidents on our roads and thus the need to safeguard the driver when he is intoxicated and render the car to be incapable of being driven. These issues merit an integrated approach to safety and security of automobiles. In the light of these challenges, an integrated microcontroller-based hardware and software system for safety and security of automobiles to be fixed into existing vehicle architecture, was designed, developed and deployed. The system submodules are: (1) Two-step ignition for automobiles, namely: (a) biometric ignition and (b) alcohol detection with engine control, (2) Global Positioning System (GPS) based vehicle tracking and (3) Multisensor-based fire detection using neuro-fuzzy logic. All submodules of the system were implemented using one microcontroller, the Arduino Mega 2560, as the central control unit. The microcontroller was programmed using C++11. The developed system performed quite well with the tests performed on it. Given the right conditions, the alcohol detection subsystem operated with a 92% efficiency. The biometric ignition subsystem operated with about 80% efficiency. The fire detection subsystem operated with a 95% efficiency in locations registered with the neuro-fuzzy system. The vehicle tracking subsystem operated with an efficiency of 90%.

2019-04-05
Li, X., Cui, X., Shi, L., Liu, C., Wang, X..  2018.  Constructing Browser Fingerprint Tracking Chain Based on LSTM Model. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :213-218.
Web attacks have increased rapidly in recent years. However, traditional methods are useless to track web attackers. Browser fingerprint, as a stateless tracking technique, can be used to solve this problem. Given browser fingerprint changes easily and frequently, it is easy to lose track. Therefore, we need to improve the stability of browser fingerprint by linking the new one to the previous chain. In this paper, we propose LSTM model to learn the potential relationship of browser fingerprint evolution. In addition, we adjust the input feature vector to time series and construct training set to train the model. The results show that our model can construct the tracking chain perfectly well with average ownership up to 99.3%.
Vastel, A., Rudametkin, W., Rouvoy, R..  2018.  FP -TESTER : Automated Testing of Browser Fingerprint Resilience. 2018 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :103-107.
Despite recent regulations and growing user awareness, undesired browser tracking is increasing. In addition to cookies, browser fingerprinting is a stateless technique that exploits a device's configuration for tracking purposes. In particular, browser fingerprinting builds on attributes made available from Javascript and HTTP headers to create a unique and stable fingerprint. For example, browser plugins have been heavily exploited by state-of-the-art browser fingerprinters as a rich source of entropy. However, as browser vendors abandon plugins in favor of extensions, fingerprinters will adapt. We present FP-TESTER, an approach to automatically test the effectiveness of browser fingerprinting countermeasure extensions. We implement a testing toolkit to be used by developers to reduce browser fingerprintability. While countermeasures aim to hinder tracking by changing or blocking attributes, they may easily introduce subtle side-effects that make browsers more identifiable, rendering the extensions counterproductive. FP-TESTER reports on the side-effects introduced by the countermeasure, as well as how they impact tracking duration from a fingerprinter's point-of-view. To the best of our knowledge, FP-TESTER is the first tool to assist developers in fighting browser fingerprinting and reducing the exposure of end-users to such privacy leaks.
Vastel, A., Laperdrix, P., Rudametkin, W., Rouvoy, R..  2018.  FP-STALKER: Tracking Browser Fingerprint Evolutions. 2018 IEEE Symposium on Security and Privacy (SP). :728-741.
Browser fingerprinting has emerged as a technique to track users without their consent. Unlike cookies, fingerprinting is a stateless technique that does not store any information on devices, but instead exploits unique combinations of attributes handed over freely by browsers. The uniqueness of fingerprints allows them to be used for identification. However, browser fingerprints change over time and the effectiveness of tracking users over longer durations has not been properly addressed. In this paper, we show that browser fingerprints tend to change frequently-from every few hours to days-due to, for example, software updates or configuration changes. Yet, despite these frequent changes, we show that browser fingerprints can still be linked, thus enabling long-term tracking. FP-STALKER is an approach to link browser fingerprint evolutions. It compares fingerprints to determine if they originate from the same browser. We created two variants of FP-STALKER, a rule-based variant that is faster, and a hybrid variant that exploits machine learning to boost accuracy. To evaluate FP-STALKER, we conduct an empirical study using 98,598 fingerprints we collected from 1, 905 distinct browser instances. We compare our algorithm with the state of the art and show that, on average, we can track browsers for 54.48 days, and 26 % of browsers can be tracked for more than 100 days.
2019-03-22
Bentahar, A., Meraoumia, A., Bendjenna, H., Zeroual, A..  2018.  IoT Securing System Using Fuzzy Commitment for DCT-Based Fingerprint Recognition. 2018 3rd International Conference on Pattern Analysis and Intelligent Systems (PAIS). :1-5.

Internet of Things refers to a paradigm consisting of a variety of uniquely identifiable day to day things communicating with one another to form a large scale dynamic network. Securing access to this network is a current challenging issue. This paper proposes an encryption system suitable to IoT features. In this system we integrated the fuzzy commitment scheme in DCT-based recognition method for fingerprint. To demonstrate the efficiency of our scheme, the obtained results are analyzed and compared with direct matching (without encryption) according to the most used criteria; FAR and FRR.

Ntshangase, C. S., Shabalala, M. B..  2018.  Encryption Using Finger-Code Generated from Fingerprints. 2018 Conference on Information Communications Technology and Society (ICTAS). :1-5.

In this paper, the literature survey of different algorithms for generating encryption keys using fingerprints is presented. The focus is on fingerprint features called minutiae points where fingerprint ridges end or bifurcate. Minutiae points require less memory and are processed faster than other fingerprint features. In addition, presented is the proposed efficient method for cryptographic key generation using finger-codes. The results show that the length of the key, computing time and the memory it requires is efficient for use as a biometric key or even as a password during verification and authentication.

2019-02-14
Arrazola, J. M., Marwah, A., Lovitz, B., Touchette, D., Lutkenhaus, N..  2018.  Cryptographic and Non-Cryptographic Network Applications and Their Optical Implementations. 2018 IEEE Photonics Society Summer Topical Meeting Series (SUM). :9-10.
The use of quantum mechanical signals in communication opens up the opportunity to build new communication systems that accomplishes tasks that communication with classical signals structures cannot achieve. Prominent examples are Quantum Key Distribution Protocols, which allows the generation of secret keys without computational assumptions of adversaries. Over the past decade, protocols have been developed that achieve tasks that can also be accomplished with classical signals, but the quantum version of the protocol either uses less resources, or leaks less information between the involved parties. The gap between quantum and classical can be exponential in the input size of the problems. Examples are the comparison of data, the scheduling of appointments and others. Until recently, it was thought that these protocols are of mere conceptual value, but that the quantum advantage could not be realized. We changed that by developing quantum optical versions of these abstract protocols that can run with simple laser pulses, beam-splitters and detectors. [1-3] By now the first protocols have been successfully implemented [4], showing that a quantum advantage can be realized. The next step is to find and realize protocols that have a high practical value.
2019-02-08
Naik, N., Jenkins, P., Cooke, R., Yang, L..  2018.  Honeypots That Bite Back: A Fuzzy Technique for Identifying and Inhibiting Fingerprinting Attacks on Low Interaction Honeypots. 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1-8.

The development of a robust strategy for network security is reliant upon a combination of in-house expertise and for completeness attack vectors used by attackers. A honeypot is one of the most popular mechanisms used to gather information about attacks and attackers. However, low-interaction honeypots only emulate an operating system and services, and are more prone to a fingerprinting attack, resulting in severe consequences such as revealing the identity of the honeypot and thus ending the usefulness of the honeypot forever, or worse, enabling it to be converted into a bot used to attack others. A number of tools and techniques are available both to fingerprint low-interaction honeypots and to defend against such fingerprinting; however, there is an absence of fingerprinting techniques to identify the characteristics and behaviours that indicate fingerprinting is occurring. Therefore, this paper proposes a fuzzy technique to correlate the attack actions and predict the probability that an attack is a fingerprinting attack on the honeypot. Initially, an experimental assessment of the fingerprinting attack on the low- interaction honeypot is performed, and a fingerprinting detection mechanism is proposed that includes the underlying principles of popular fingerprinting attack tools. This implementation is based on a popular and commercially available low-interaction honeypot for Windows - KFSensor. However, the proposed fuzzy technique is a general technique and can be used with any low-interaction honeypot to aid in the identification of the fingerprinting attack whilst it is occurring; thus protecting the honeypot from the fingerprinting attack and extending its life.

Ivanova, M., Durcheva, M., Baneres, D., Rodríguez, M. E..  2018.  eAssessment by Using a Trustworthy System in Blended and Online Institutions. 2018 17th International Conference on Information Technology Based Higher Education and Training (ITHET). :1-7.

eAssessment uses technology to support online evaluation of students' knowledge and skills. However, challenging problems must be addressed such as trustworthiness among students and teachers in blended and online settings. The TeSLA system proposes an innovative solution to guarantee correct authentication of students and to prove the authorship of their assessment tasks. Technologically, the system is based on the integration of five instruments: face recognition, voice recognition, keystroke dynamics, forensic analysis, and plagiarism. The paper aims to analyze and compare the results achieved after the second pilot performed in an online and a blended university revealing the realization of trust-driven solutions for eAssessment.

2019-01-21
Yao, S., Niu, B., Liu, J..  2018.  Enhancing Sampling and Counting Method for Audio Retrieval with Time-Stretch Resistance. 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM). :1–5.

An ideal audio retrieval method should be not only highly efficient in identifying an audio track from a massive audio dataset, but also robust to any distortion. Unfortunately, none of the audio retrieval methods is robust to all types of distortions. An audio retrieval method has to do with both the audio fingerprint and the strategy, especially how they are combined. We argue that the Sampling and Counting Method (SC), a state-of-the-art audio retrieval method, would be promising towards an ideal audio retrieval method, if we could make it robust to time-stretch and pitch-stretch. Towards this objective, this paper proposes a turning point alignment method to enhance SC with resistance to time-stretch, which makes Philips and Philips-like fingerprints resist to time-stretch. Experimental results show that our approach can resist to time-stretch from 70% to 130%, which is on a par to the state-of-the-art methods. It also marginally improves the retrieval performance with various noise distortions.

2019-01-16
Jia, Z., Cui, X., Liu, Q., Wang, X., Liu, C..  2018.  Micro-Honeypot: Using Browser Fingerprinting to Track Attackers. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :197–204.
Web attacks have proliferated across the whole Internet in recent years. To protect websites, security vendors and researchers collect attack information using web honeypots. However, web attackers can hide themselves by using stepping stones (e.g., VPN, encrypted proxy) or anonymous networks (e.g., Tor network). Conventional web honeypots lack an effective way to gather information about an attacker's identity, which raises a big obstacle for cybercrime traceability and forensics. Traditional forensics methods are based on traffic analysis; it requires that defenders gain access to the entire network. It is not suitable for honeypots. In this paper, we present the design, implementation, and deployment of the Micro-Honeypot, which aims to use the browser fingerprinting technique to track a web attacker. Traditional honeypot lure attackers and records attacker's activity. Micro-Honeypot is deployed in a honeypot. It will run and gather identity information when an attacker visits the honeypot. Our preliminary results show that Micro-Honeypot could collect more information and track attackers although they might have used proxies or anonymous networks to hide themselves.
2018-09-12
Al-hisnawi, M., Ahmadi, M..  2017.  Deep packet inspection using Cuckoo filter. 2017 Annual Conference on New Trends in Information Communications Technology Applications (NTICT). :197–202.

Nowadays, Internet Service Providers (ISPs) have been depending on Deep Packet Inspection (DPI) approaches, which are the most precise techniques for traffic identification and classification. However, constructing high performance DPI approaches imposes a vigilant and an in-depth computing system design because the demands for the memory and processing power. Membership query data structures, specifically Bloom filter (BF), have been employed as a matching check tool in DPI approaches. It has been utilized to store signatures fingerprint in order to examine the presence of these signatures in the incoming network flow. The main issue that arise when employing Bloom filter in DPI approaches is the need to use k hash functions which, in turn, imposes more calculations overhead that degrade the performance. Consequently, in this paper, a new design and implementation for a DPI approach have been proposed. This DPI utilizes a membership query data structure called Cuckoo filter (CF) as a matching check tool. CF has many advantages over BF like: less memory consumption, less false positive rate, higher insert performance, higher lookup throughput, support delete operation. The achieved experiments show that the proposed approach offers better performance results than others that utilize Bloom filter.

2018-06-11
Chen, X., Qu, G., Cui, A., Dunbar, C..  2017.  Scan chain based IP fingerprint and identification. 2017 18th International Symposium on Quality Electronic Design (ISQED). :264–270.

Digital fingerprinting refers to as method that can assign each copy of an intellectual property (IP) a distinct fingerprint. It was introduced for the purpose of protecting legal and honest IP users. The unique fingerprint can be used to identify the IP or a chip that contains the IP. However, existing fingerprinting techniques are not practical due to expensive cost of creating fingerprints and the lack of effective methods to verify the fingerprints. In the paper, we study a practical scan chain based fingerprinting method, where the digital fingerprint is generated by selecting the Q-SD or Q'-SD connection during the design of scan chains. This method has two major advantages. First, fingerprints are created as a post-silicon procedure and therefore there will be little fabrication overhead. Second, altering the Q-SD or Q'-SD connection style requires the modification of test vectors for each fingerprinted IP in order to maintain the fault coverage. This enables us to verify the fingerprint by inspecting the test vectors without opening up the chip to check the Q-SD or Q'-SD connection styles. We perform experiment on standard benchmarks to demonstrate that our approach has low design overhead. We also conduct security analysis to show that such fingerprints are robust against various attacks.

2018-06-07
Appiah, B., Opoku-Mensah, E., Qin, Z..  2017.  SQL injection attack detection using fingerprints and pattern matching technique. 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS). :583–587.

Web-Based applications are becoming more increasingly technically complex and sophisticated. The very nature of their feature-rich design and their capability to collate, process, and disseminate information over the Internet or from within an intranet makes them a popular target for attack. According to Open Web Application Security Project (OWASP) Top Ten Cheat sheet-2017, SQL Injection Attack is at peak among online attacks. This can be attributed primarily to lack of awareness on software security. Developing effective SQL injection detection approaches has been a challenge in spite of extensive research in this area. In this paper, we propose a signature based SQL injection attack detection framework by integrating fingerprinting method and Pattern Matching to distinguish genuine SQL queries from malicious queries. Our framework monitors SQL queries to the database and compares them against a dataset of signatures from known SQL injection attacks. If the fingerprint method cannot determine the legitimacy of query alone, then the Aho Corasick algorithm is invoked to ascertain whether attack signatures appear in the queries. The initial experimental results of our framework indicate the approach can identify wide variety of SQL injection attacks with negligible impact on performance.

2018-03-19
Faust, C., Dozier, G., Xu, J., King, M. C..  2017.  Adversarial Authorship, Interactive Evolutionary Hill-Climbing, and Author CAAT-III. 2017 IEEE Symposium Series on Computational Intelligence (SSCI). :1–8.

We are currently witnessing the development of increasingly effective author identification systems (AISs) that have the potential to track users across the internet based on their writing style. In this paper, we discuss two methods for providing user anonymity with respect to writing style: Adversarial Stylometry and Adversarial Authorship. With Adversarial Stylometry, a user attempts to obfuscate their writing style by consciously altering it. With Adversarial Authorship, a user can select an author cluster target (ACT) and write toward this target with the intention of subverting an AIS so that the user's writing sample will be misclassified Our results show that Adversarial Authorship via interactive evolutionary hill-climbing outperforms Adversarial Stylometry.

Rawal, B. S., Vivek, S. S..  2017.  Secure Cloud Storage and File Sharing. 2017 IEEE International Conference on Smart Cloud (SmartCloud). :78–83.
Internet-based online cloud services provide enormous volumes of storage space, tailor made computing resources and eradicates the obligation of native machines for data maintenance as well. Cloud storage service providers claim to offer the ability of secure and elastic data-storage services that can adapt to various storage necessities. Most of the security tools have a finite rate of failure, and intrusion comes with more complex and sophisticated techniques; the security failure rates are skyrocketing. Once we upload our data into the cloud, we lose control of our data, which certainly brings new security risks toward integrity and confidentiality of our data. In this paper, we discuss a secure file sharing mechanism for the cloud with the disintegration protocol (DIP). The paper also introduces new contribution of seamless file sharing technique among different clouds without sharing an encryption key.
2018-02-15
Han, Z., Yang, L., Liu, Q..  2017.  A Novel Multifactor Two-Server Authentication Scheme under the Mobile Cloud Computing. 2017 International Conference on Networking and Network Applications (NaNA). :341–346.

Because the authentication method based username-password has the disadvantage of easy disclosure and low reliability, and also the excess password management degrades the user experience tremendously, the user is eager to get rid of the bond of the password in order to seek a new way of authentication. Therefore, the multifactor biometrics-based user authentication wins the favor of people with advantages of simplicity, convenience and high reliability, especially in the mobile payment environment. Unfortunately, in the existing scheme, biometric information is stored on the server side. As thus, once the server is hacked by attackers to cause the leakage of the fingerprint information, it will take a deadly threat to the user privacy. Aim at the security problem due to the fingerprint information in the mobile payment environment, we propose a novel multifactor two-server authentication scheme under mobile computing (MTSAS). In the MTSAS, it divides the authentication method and authentication means, in the meanwhile, the user's biometric characteristics cannot leave the user device. And also, MTSAS chooses the different authentication factors depending on the privacy level of the authentication, and then provides the authentication based on the different security levels. BAN logic's result proves that MTSAS has achieved the purpose of authentication, and meets the security requirements. In comparison with other schemes, the analysis shows that the proposed scheme MTSAS not only has the reasonable computational efficiency, but also keeps the superior communication cost.