Biblio
Location determination in the indoor areas as well as in open areas is important for many applications. But location determination in the indoor areas is a very difficult process compared to open areas. The Global Positioning System (GPS) signals used for position detection is not effective in the indoor areas. Wi-Fi signals are a widely used method for localization detection in the indoor area. In the indoor areas, localization can be used for many different purposes, such as intelligent home systems, locations of people, locations of products in the depot. In this study, it was tried to determine localization for with the classification method for 4 different areas by using Wi-Fi signal values obtained from different routers for indoor location determination. Linear discriminant analysis (LDA) classification was used for classification. In the test using 10k fold cross-validation, 97.2% accuracy value was calculated.
Kerberos is a third party and widely used authentication protocol, in which it enables computers to connect securely using a single sign-on over an insecure channel. It proves the identity of clients and encrypts all the communications between them to ensure data privacy and integrity. Typically, Kerberos composes of three communication phases to establish a secure session between any two clients. The authentication is based on a password-based scheme, in which it is a secret long-term key shared between the client and the Kerberos. Therefore, Kerberos suffers from a password-guessing attack, the main drawback of Kerberos. In this paper, we overcome this limitation by modifying the first initial phase using the virtual password and biometric data. In addition, the proposed protocol provides a strong authentication scenario against multiple types of attacks.
Automobiles provide comfort and mobility to owners. While they make life more meaningful they also pose challenges and risks in their safety and security mechanisms. Some modern automobiles are equipped with anti-theft systems and enhanced safety measures to safeguard its drivers. But at times, these mechanisms for safety and secured operation of automobiles are insufficient due to various mechanisms used by intruders and car thieves to defeat them. Drunk drivers cause accidents on our roads and thus the need to safeguard the driver when he is intoxicated and render the car to be incapable of being driven. These issues merit an integrated approach to safety and security of automobiles. In the light of these challenges, an integrated microcontroller-based hardware and software system for safety and security of automobiles to be fixed into existing vehicle architecture, was designed, developed and deployed. The system submodules are: (1) Two-step ignition for automobiles, namely: (a) biometric ignition and (b) alcohol detection with engine control, (2) Global Positioning System (GPS) based vehicle tracking and (3) Multisensor-based fire detection using neuro-fuzzy logic. All submodules of the system were implemented using one microcontroller, the Arduino Mega 2560, as the central control unit. The microcontroller was programmed using C++11. The developed system performed quite well with the tests performed on it. Given the right conditions, the alcohol detection subsystem operated with a 92% efficiency. The biometric ignition subsystem operated with about 80% efficiency. The fire detection subsystem operated with a 95% efficiency in locations registered with the neuro-fuzzy system. The vehicle tracking subsystem operated with an efficiency of 90%.
Internet of Things refers to a paradigm consisting of a variety of uniquely identifiable day to day things communicating with one another to form a large scale dynamic network. Securing access to this network is a current challenging issue. This paper proposes an encryption system suitable to IoT features. In this system we integrated the fuzzy commitment scheme in DCT-based recognition method for fingerprint. To demonstrate the efficiency of our scheme, the obtained results are analyzed and compared with direct matching (without encryption) according to the most used criteria; FAR and FRR.
In this paper, the literature survey of different algorithms for generating encryption keys using fingerprints is presented. The focus is on fingerprint features called minutiae points where fingerprint ridges end or bifurcate. Minutiae points require less memory and are processed faster than other fingerprint features. In addition, presented is the proposed efficient method for cryptographic key generation using finger-codes. The results show that the length of the key, computing time and the memory it requires is efficient for use as a biometric key or even as a password during verification and authentication.
The development of a robust strategy for network security is reliant upon a combination of in-house expertise and for completeness attack vectors used by attackers. A honeypot is one of the most popular mechanisms used to gather information about attacks and attackers. However, low-interaction honeypots only emulate an operating system and services, and are more prone to a fingerprinting attack, resulting in severe consequences such as revealing the identity of the honeypot and thus ending the usefulness of the honeypot forever, or worse, enabling it to be converted into a bot used to attack others. A number of tools and techniques are available both to fingerprint low-interaction honeypots and to defend against such fingerprinting; however, there is an absence of fingerprinting techniques to identify the characteristics and behaviours that indicate fingerprinting is occurring. Therefore, this paper proposes a fuzzy technique to correlate the attack actions and predict the probability that an attack is a fingerprinting attack on the honeypot. Initially, an experimental assessment of the fingerprinting attack on the low- interaction honeypot is performed, and a fingerprinting detection mechanism is proposed that includes the underlying principles of popular fingerprinting attack tools. This implementation is based on a popular and commercially available low-interaction honeypot for Windows - KFSensor. However, the proposed fuzzy technique is a general technique and can be used with any low-interaction honeypot to aid in the identification of the fingerprinting attack whilst it is occurring; thus protecting the honeypot from the fingerprinting attack and extending its life.
eAssessment uses technology to support online evaluation of students' knowledge and skills. However, challenging problems must be addressed such as trustworthiness among students and teachers in blended and online settings. The TeSLA system proposes an innovative solution to guarantee correct authentication of students and to prove the authorship of their assessment tasks. Technologically, the system is based on the integration of five instruments: face recognition, voice recognition, keystroke dynamics, forensic analysis, and plagiarism. The paper aims to analyze and compare the results achieved after the second pilot performed in an online and a blended university revealing the realization of trust-driven solutions for eAssessment.
An ideal audio retrieval method should be not only highly efficient in identifying an audio track from a massive audio dataset, but also robust to any distortion. Unfortunately, none of the audio retrieval methods is robust to all types of distortions. An audio retrieval method has to do with both the audio fingerprint and the strategy, especially how they are combined. We argue that the Sampling and Counting Method (SC), a state-of-the-art audio retrieval method, would be promising towards an ideal audio retrieval method, if we could make it robust to time-stretch and pitch-stretch. Towards this objective, this paper proposes a turning point alignment method to enhance SC with resistance to time-stretch, which makes Philips and Philips-like fingerprints resist to time-stretch. Experimental results show that our approach can resist to time-stretch from 70% to 130%, which is on a par to the state-of-the-art methods. It also marginally improves the retrieval performance with various noise distortions.
Nowadays, Internet Service Providers (ISPs) have been depending on Deep Packet Inspection (DPI) approaches, which are the most precise techniques for traffic identification and classification. However, constructing high performance DPI approaches imposes a vigilant and an in-depth computing system design because the demands for the memory and processing power. Membership query data structures, specifically Bloom filter (BF), have been employed as a matching check tool in DPI approaches. It has been utilized to store signatures fingerprint in order to examine the presence of these signatures in the incoming network flow. The main issue that arise when employing Bloom filter in DPI approaches is the need to use k hash functions which, in turn, imposes more calculations overhead that degrade the performance. Consequently, in this paper, a new design and implementation for a DPI approach have been proposed. This DPI utilizes a membership query data structure called Cuckoo filter (CF) as a matching check tool. CF has many advantages over BF like: less memory consumption, less false positive rate, higher insert performance, higher lookup throughput, support delete operation. The achieved experiments show that the proposed approach offers better performance results than others that utilize Bloom filter.
Digital fingerprinting refers to as method that can assign each copy of an intellectual property (IP) a distinct fingerprint. It was introduced for the purpose of protecting legal and honest IP users. The unique fingerprint can be used to identify the IP or a chip that contains the IP. However, existing fingerprinting techniques are not practical due to expensive cost of creating fingerprints and the lack of effective methods to verify the fingerprints. In the paper, we study a practical scan chain based fingerprinting method, where the digital fingerprint is generated by selecting the Q-SD or Q'-SD connection during the design of scan chains. This method has two major advantages. First, fingerprints are created as a post-silicon procedure and therefore there will be little fabrication overhead. Second, altering the Q-SD or Q'-SD connection style requires the modification of test vectors for each fingerprinted IP in order to maintain the fault coverage. This enables us to verify the fingerprint by inspecting the test vectors without opening up the chip to check the Q-SD or Q'-SD connection styles. We perform experiment on standard benchmarks to demonstrate that our approach has low design overhead. We also conduct security analysis to show that such fingerprints are robust against various attacks.
Web-Based applications are becoming more increasingly technically complex and sophisticated. The very nature of their feature-rich design and their capability to collate, process, and disseminate information over the Internet or from within an intranet makes them a popular target for attack. According to Open Web Application Security Project (OWASP) Top Ten Cheat sheet-2017, SQL Injection Attack is at peak among online attacks. This can be attributed primarily to lack of awareness on software security. Developing effective SQL injection detection approaches has been a challenge in spite of extensive research in this area. In this paper, we propose a signature based SQL injection attack detection framework by integrating fingerprinting method and Pattern Matching to distinguish genuine SQL queries from malicious queries. Our framework monitors SQL queries to the database and compares them against a dataset of signatures from known SQL injection attacks. If the fingerprint method cannot determine the legitimacy of query alone, then the Aho Corasick algorithm is invoked to ascertain whether attack signatures appear in the queries. The initial experimental results of our framework indicate the approach can identify wide variety of SQL injection attacks with negligible impact on performance.
We are currently witnessing the development of increasingly effective author identification systems (AISs) that have the potential to track users across the internet based on their writing style. In this paper, we discuss two methods for providing user anonymity with respect to writing style: Adversarial Stylometry and Adversarial Authorship. With Adversarial Stylometry, a user attempts to obfuscate their writing style by consciously altering it. With Adversarial Authorship, a user can select an author cluster target (ACT) and write toward this target with the intention of subverting an AIS so that the user's writing sample will be misclassified Our results show that Adversarial Authorship via interactive evolutionary hill-climbing outperforms Adversarial Stylometry.
Because the authentication method based username-password has the disadvantage of easy disclosure and low reliability, and also the excess password management degrades the user experience tremendously, the user is eager to get rid of the bond of the password in order to seek a new way of authentication. Therefore, the multifactor biometrics-based user authentication wins the favor of people with advantages of simplicity, convenience and high reliability, especially in the mobile payment environment. Unfortunately, in the existing scheme, biometric information is stored on the server side. As thus, once the server is hacked by attackers to cause the leakage of the fingerprint information, it will take a deadly threat to the user privacy. Aim at the security problem due to the fingerprint information in the mobile payment environment, we propose a novel multifactor two-server authentication scheme under mobile computing (MTSAS). In the MTSAS, it divides the authentication method and authentication means, in the meanwhile, the user's biometric characteristics cannot leave the user device. And also, MTSAS chooses the different authentication factors depending on the privacy level of the authentication, and then provides the authentication based on the different security levels. BAN logic's result proves that MTSAS has achieved the purpose of authentication, and meets the security requirements. In comparison with other schemes, the analysis shows that the proposed scheme MTSAS not only has the reasonable computational efficiency, but also keeps the superior communication cost.