Visible to the public Biblio

Found 228 results

Filters: Keyword is risk management  [Clear All Filters]
2022-09-09
Hong, TingYi, Kolios, Athanasios.  2020.  A Framework for Risk Management of Large-Scale Organisation Supply Chains. 2020 International Conference on Decision Aid Sciences and Application (DASA). :948—953.
This paper establishes a novel approach to supply chain risk management (SCRM), through establishing a risk assessment framework addressing the importance of SCRM and supply chain visibility (SCV). Through a quantitative assessment and empirical evidence, the paper also discusses the specific risks within the manufacturing industry. Based on survey data collected and a case study from Asia, the paper finds that supplier delays and poor product quality can be considered as prevailing risks relevant to the manufacturing industry. However, as supply chain risks are inter-related, one must increase supply chain visibility to fully consider risk causes that ultimately lead to the risk effects. The framework established can be applied to different industries with the view to inform organisations on prevailing risks and prompt motivate improvement in supply chain visibility, thereby, modify risk management strategies. Through suggesting possible risk sources, organisations can adopt proactive risk mitigation strategies so as to more efficiently manage their exposure.
Kirillova, Elena A., Shavaev, Azamat A., Wenqi, Xi, Huiting, Guo, Suyu, Wang.  2020.  Information Security of Logistics Services. 2020 International Conference Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS). :103—106.

Information security of logistics services. Information security of logistics services is understood as a complex activity aimed at using information and means of its processing in order to increase the level of protection and normal functioning of the object's information environment. At the same time the main recommendations for ensuring information security of logistics processes include: logistics support of processes for ensuring the security of information flows of the enterprise; assessment of the quality and reliability of elements, reliability and efficiency of obtaining information about the state of logistics processes. However, it is possible to assess the level of information security within the organization's controlled part of the supply chain through levels and indicators. In this case, there are four levels and elements of information security of supply chains.

2022-08-26
Zhang, Fan, Bu, Bing.  2021.  A Cyber Security Risk Assessment Methodology for CBTC Systems Based on Complex Network Theory and Attack Graph. 2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC). :15—20.

Cyber security risk assessment is very important to quantify the security level of communication-based train control (CBTC) systems. In this paper, a methodology is proposed to assess the cyber security risk of CBTC systems that integrates complex network theory and attack graph method. On one hand, in order to determine the impact of malicious attacks on train control, we analyze the connectivity of movement authority (MA) paths based on the working state of nodes, the connectivity of edges. On the other hand, attack graph is introduced to quantify the probabilities of potential attacks that combine multiple vulnerabilities in the cyber world of CBTC. Experiments show that our methodology can assess the security risks of CBTC systems and improve the security level after implementing reinforcement schemes.

Basumatary, Basundhara, Kumar, Chandan, Yadav, Dilip Kumar.  2021.  Security Risk Assessment of Information Systems in an Indeterminate Environment. 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence). :82—87.

The contemporary struggle that rests upon security risk assessment of Information Systems is its feasibility in the presence of an indeterminate environment when information is insufficient, conflicting, generic or ambiguous. But as pointed out by the security experts, most of the traditional approaches to risk assessment of information systems security are no longer practicable as they fail to deliver viable support on handling uncertainty. Therefore, to address this issue, we have anticipated a comprehensive risk assessment model based on Bayesian Belief Network (BBN) and Fuzzy Inference Scheme (FIS) process to function in an indeterminate environment. The proposed model is demonstrated and further comparisons are made on the test results to validate the reliability of the proposed model.

2022-06-09
Başer, Melike, Güven, Ebu Yusuf, Aydın, Muhammed Ali.  2021.  SSH and Telnet Protocols Attack Analysis Using Honeypot Technique: Analysis of SSH AND ℡NET Honeypot. 2021 6th International Conference on Computer Science and Engineering (UBMK). :806–811.
Generally, the defense measures taken against new cyber-attack methods are insufficient for cybersecurity risk management. Contrary to classical attack methods, the existence of undiscovered attack types called’ zero-day attacks’ can invalidate the actions taken. It is possible with honeypot systems to implement new security measures by recording the attacker’s behavior. The purpose of the honeypot is to learn about the methods and tools used by the attacker or malicious activity. In particular, it allows us to discover zero-day attack types and develop new defense methods for them. Attackers have made protocols such as SSH (Secure Shell) and Telnet, which are widely used for remote access to devices, primary targets. In this study, SSHTelnet honeypot was established using Cowrie software. Attackers attempted to connect, and attackers record their activity after providing access. These collected attacker log records and files uploaded to the system are published on Github to other researchers1. We shared the observations and analysis results of attacks on SSH and Telnet protocols with honeypot.
2022-05-19
Perrone, Paola, Flammini, Francesco, Setola, Roberto.  2021.  Machine Learning for Threat Recognition in Critical Cyber-Physical Systems. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :298–303.

Cybersecurity has become an emerging challenge for business information management and critical infrastructure protection in recent years. Artificial Intelligence (AI) has been widely used in different fields, but it is still relatively new in the area of Cyber-Physical Systems (CPS) security. In this paper, we provide an approach based on Machine Learning (ML) to intelligent threat recognition to enable run-time risk assessment for superior situation awareness in CPS security monitoring. With the aim of classifying malicious activity, several machine learning methods, such as k-nearest neighbours (kNN), Naïve Bayes (NB), Support Vector Machine (SVM), Decision Tree (DT) and Random Forest (RF), have been applied and compared using two different publicly available real-world testbeds. The results show that RF allowed for the best classification performance. When used in reference industrial applications, the approach allows security control room operators to get notified of threats only when classification confidence will be above a threshold, hence reducing the stress of security managers and effectively supporting their decisions.

2022-04-21
Kriz, Danielle.  2011.  Cybersecurity principles for industry and government: A useful framework for efforts globally to improve cybersecurity. 2011 Second Worldwide Cybersecurity Summit (WCS). :1–3.
To better inform the public cybersecurity discussion, in January 2011 the Information Technology Industry Council (ITI) developed a comprehensive set of cybersecurity principles for industry and government [1]. ITI's six principles aim to provide a useful and important lens through which any efforts to improve cybersecurity should be viewed.
2022-04-18
Ahmed-Zaid, Said, Loo, Sin Ming, Valdepena-Delgado, Andres, Beam, Theron.  2021.  Cyber-Physical Security Assessment and Resilience of a Microgrid Testbed. 2021 Resilience Week (RWS). :1–3.
In order to identify potential weakness in communication and data in transit, a microgrid testbed is being developed at Boise State University. This testbed will be used to verify microgrid models and communication methods in an effort to increase the resiliency of these systems to cyber-attacks. If vulnerabilities are found in these communication methods, then risk mitigation techniques will be developed to address them.
Rafaiani, Giulia, Battaglioni, Massimo, Baldi, Marco, Chiaraluce, Franco, Libertini, Giovanni, Spalazzi, Luca, Cancellieri, Giovanni.  2021.  A Functional Approach to Cyber Risk Assessment. 2021 AEIT International Annual Conference (AEIT). :1–6.
Information security has become a crucial issue not only from the technical standpoint, but also from the managerial standpoint. The necessity for organizations to understand and manage cyber risk has led to the rise of a plethora of risk assessment methods and tools. These approaches are often difficult to interpret and complex to manage for organizations. In this paper, we propose a simple and quantitative method for the estimation of the likelihood of occurrence of a cyber incident. Our approach uses a generalized logistic function and a cumulative geometric distribution to combine the maturity and the complexity of the technical infrastructure of an organization with its attractiveness towards cyber criminals.
2022-03-14
Kummerow, André, Rösch, Dennis, Nicolai, Steffen, Brosinsky, Christoph, Westermann, Dirk, Naumann, é.  2021.  Attacking dynamic power system control centers - a cyber-physical threat analysis. 2021 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :01—05.

In dynamic control centers, conventional SCADA systems are enhanced with novel assistance functionalities to increase existing monitoring and control capabilities. To achieve this, different key technologies like phasor measurement units (PMU) and Digital Twins (DT) are incorporated, which give rise to new cyber-security challenges. To address these issues, a four-stage threat analysis approach is presented to identify and assess system vulnerabilities for novel dynamic control center architectures. For this, a simplified risk assessment method is proposed, which allows a detailed analysis of the different system vulnerabilities considering various active and passive cyber-attack types. Qualitative results of the threat analysis are presented and discussed for different use cases at the control center and substation level.

2022-03-01
Petratos, Pythagoras, Faccia, Alessio.  2021.  Securing Energy Networks: Blockchain and Accounting Systems. 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1–5.
The energy sector is facing increasing risks, mainly concerning fraudulent activities and cyberattacks. This paradigm shift in risks would require innovative solutions. This paper proposes an innovative architecture based on Distributed Ledger Technologies (Blockchain) and Triple Entry Accounting (X-Accounting). The proposed architecture focusing on new applications of payment and billing would improve accountability and compliance as well as security and reliability. Future research can extend this architecture to other energy technologies and systems like EMS/SCADA and associated applications.
2022-02-24
Dax, Alexander, Künnemann, Robert.  2021.  On the Soundness of Infrastructure Adversaries. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1–16.
Campus Companies and network operators perform risk assessment to inform policy-making, guide infrastructure investments or to comply with security standards such as ISO 27001. Due to the size and complexity of these networks, risk assessment techniques such as attack graphs or trees describe the attacker with a finite set of rules. This characterization of the attacker can easily miss attack vectors or overstate them, potentially leading to incorrect risk estimation. In this work, we propose the first methodology to justify a rule-based attacker model. Conceptually, we add another layer of abstraction on top of the symbolic model of cryptography, which reasons about protocols and abstracts cryptographic primitives. This new layer reasons about Internet-scale networks and abstracts protocols.We show, in general, how the soundness and completeness of a rule-based model can be ensured by verifying trace properties, linking soundness to safety properties and completeness to liveness properties. We then demonstrate the approach for a recently proposed threat model that quantifies the confidentiality of email communication on the Internet, including DNS, DNSSEC, and SMTP. Using off-the-shelf protocol verification tools, we discover two flaws in their threat model. After fixing them, we show that it provides symbolic soundness.
2022-02-04
Al-Turkistani, Hilalah F., AlFaadhel, Alaa.  2021.  Cyber Resiliency in the Context of Cloud Computing Through Cyber Risk Assessment. 2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA). :73–78.
Cyber resiliency in Cloud computing is one of the most important capability of an enterprise network that provides continues ability to withstand and quick recovery from the adversary conditions. This capability can be measured through cybersecurity risk assessment techniques. However, cybersecurity risk management studies in cloud computing resiliency approaches are deficient. This paper proposes resilient cloud cybersecurity risk assessment tailored specifically to Dropbox with two methods: technical-based solution motivated by a cybersecurity risk assessment of cloud services, and a target personnel-based solution guided by cybersecurity-related survey among employees to identify their knowledge that qualifies them withstand to any cyberattack. The proposed work attempts to identify cloud vulnerabilities, assess threats and detect high risk components, to finally propose appropriate safeguards such as failure predicting and removing, redundancy or load balancing techniques for quick recovery and return to pre-attack state if failure happens.
2022-01-31
Gómez, Giancarlo, Espina, Enrique, Armas-Aguirre, Jimmy, Molina, Juan Manuel Madrid.  2021.  Cybersecurity architecture functional model for cyber risk reduction in IoT based wearable devices. 2021 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI). :1—4.
In this paper, we propose a functional model for the implementation of devices that use the Internet of Things (IoT). In recent years, the number of devices connected to the internet per person has increased from 0.08 in 2003 to a total of 6.58 in 2020, suggesting an increase of 8,225% in 7 years. The proposal includes a functional IoT model of a cybersecurity architecture by including components to ensure compliance with the proposed controls within a cybersecurity framework to detect cyber threats in IoT-based wearable devices. The proposal focuses on reducing the number of vulnerabilities present in IoT devices since, on average, 57% of these devices are vulnerable to attacks. The model has a 3-layer structure: business, applications, and technology, where components such as policies, services and nodes are described accordingly. The validation was done through a simulated environment of a system for the control and monitoring of pregnant women using wearable devices. The results show reductions of the probability index and the impact of risks by 14.95% and 6.81% respectively.
2022-01-10
Stan, Orly, Bitton, Ron, Ezrets, Michal, Dadon, Moran, Inokuchi, Masaki, Ohta, Yoshinobu, Yagyu, Tomohiko, Elovici, Yuval, Shabtai, Asaf.  2021.  Heuristic Approach for Countermeasure Selection Using Attack Graphs. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1–16.
Selecting the optimal set of countermeasures to secure a network is a challenging task, since it involves various considerations and trade-offs, such as prioritizing the risks to mitigate given the mitigation costs. Previously suggested approaches are based on limited and largely manual risk assessment procedures, provide recommendations for a specific event, or don't consider the organization's constraints (e.g., limited budget). In this paper, we present an improved attack graph-based risk assessment process and apply heuristic search to select an optimal countermeasure plan for a given network and budget. The risk assessment process represents the risk in the system in such a way that incorporates the quantitative risk factors and relevant countermeasures; this allows us to assess the risk in the system under different countermeasure plans during the search, without the need to regenerate the attack graph. We also provide a detailed description of countermeasure modeling and discuss how the countermeasures can be automatically matched to the security issues discovered in the network.
2021-12-21
Ba\c ser, Melike, Güven, Ebu Yusuf, Aydın, Muhammed Ali.  2021.  SSH and Telnet Protocols Attack Analysis Using Honeypot Technique : *Analysis of SSH AND ℡NET Honeypot. 2021 6th International Conference on Computer Science and Engineering (UBMK). :806–811.
Generally, the defense measures taken against new cyber-attack methods are insufficient for cybersecurity risk management. Contrary to classical attack methods, the existence of undiscovered attack types called' zero-day attacks' can invalidate the actions taken. It is possible with honeypot systems to implement new security measures by recording the attacker's behavior. The purpose of the honeypot is to learn about the methods and tools used by the attacker or malicious activity. In particular, it allows us to discover zero-day attack types and develop new defense methods for them. Attackers have made protocols such as SSH (Secure Shell) and Telnet, which are widely used for remote access to devices, primary targets. In this study, SSHTelnet honeypot was established using Cowrie software. Attackers attempted to connect, and attackers record their activity after providing access. These collected attacker log records and files uploaded to the system are published on Github to other researchers1. We shared the observations and analysis results of attacks on SSH and Telnet protocols with honeypot.
2021-11-29
Chandra, Nungky Awang, Putri Ratna, Anak Agung, Ramli, Kalamullah.  2020.  Development of a Cyber-Situational Awareness Model of Risk Maturity Using Fuzzy FMEA. 2020 International Workshop on Big Data and Information Security (IWBIS). :127–136.
This paper uses Endsley's situational awareness model as a starting point for creating a new cyber-security awareness model for risk maturity. This is used to model the relationship between risk management-based situational awareness and levels of maturity in making decisions to deal with potential cyber-attacks. The risk maturity related to cyber situational awareness using the fuzzy failure mode effect analysis (FMEA) method is needed as a basis for effective risk-based decision making and to measure the level of maturity in decision making using the Software Engineering Institute Capability Maturity Model Integration (SEI CMMI) approach. The novelty of this research is that it builds a model of the relationship between the level of maturity and the level of risk in cyber-situational awareness. Based on the data during the COVID-19 pandemic, there was a decrease in the number of incidents, including the following decreases: from 15-29 cases of malware attacks to 8-12 incidents, from 20-35 phishing cases to 12-15 cases and from 5-10 ransomware cases to 5-6 cases.
2021-10-12
Franchina, L., Socal, A..  2020.  Innovative Predictive Model for Smart City Security Risk Assessment. 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). :1831–1836.
In a Smart City, new technologies such as big data analytics, data fusion and artificial intelligence will increase awareness by measuring many phenomena and storing a huge amount of data. 5G will allow communication of these data among different infrastructures instantaneously. In a Smart City, security aspects are going to be a major concern. Some drawbacks, such as vulnerabilities of a highly integrated system and information overload, must be considered. To overcome these downsides, an innovative predictive model for Smart City security risk assessment has been developed. Risk metrics and indicators are defined by considering data coming from a wide range of sensors. An innovative ``what if'' algorithm is introduced to identify critical infrastructures functional relationship. Therefore, it is possible to evaluate the effects of an incident that involves one infrastructure over the others.
2021-09-16
Mancini, Federico, Bruvoll, Solveig, Melrose, John, Leve, Frederick, Mailloux, Logan, Ernst, Raphael, Rein, Kellyn, Fioravanti, Stefano, Merani, Diego, Been, Robert.  2020.  A Security Reference Model for Autonomous Vehicles in Military Operations. 2020 IEEE Conference on Communications and Network Security (CNS). :1–8.
In a previous article [1] we proposed a layered framework to support the assessment of the security risks associated with the use of autonomous vehicles in military operations and determine how to manage these risks appropriately. We established consistent terminology and defined the problem space, while exploring the first layer of the framework, namely risks from the mission assurance perspective. In this paper, we develop the second layer of the framework. This layer focuses on the risk assessment of the vehicles themselves and on producing a highlevel security design adequate for the mission defined in the first layer. To support this process, we also define a reference model for autonomous vehicles to use as a common basis for the assessment of risks and the design of the security controls.
2021-08-12
Jaigirdar, Fariha Tasmin, Rudolph, Carsten, Bain, Chris.  2020.  Prov-IoT: A Security-Aware IoT Provenance Model. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1360—1367.
A successful application of an Internet of Things (IoT) based network depends on the accurate and successful delivery of a large amount of data collected from numerous sources. However, the highly dynamic nature of IoT network prevents the establishment of clear security perimeters and hampers the understanding of security aspects. Risk assessment in such networks requires good situational awareness with respect to security. Therefore, a comprehensive view of data propagation including information on security controls can improve security analysis and risk assessment in each layer of data propagation in an IoT architecture. Documentation of metadata is already used in data provenance to identify who generates which data, how, and when. However, documentation of security information is not seen as relevant for data provenance graphs. In this paper, we discuss the importance of adding security metadata in a data provenance graph. We propose a novel IoT Provenance model, Prov-IoT, which documents the history of data records considering data processing and aggregation along with security metadata to enable a foundation for trust in data. The model portrays a comprehensive framework and outlines the identification of information to be included in designing a security-aware provenance graph. This can be beneficial for uncovering system fault or intrusion. Also, it can be useful for decision-based systems for security analysis and risk estimation. We design an associated class diagram for the Prov-IoT model. Finally, we use an IoT healthcare example scenario to demonstrate the impact of the proposed model.
2021-08-11
Mathas, Christos-Minas, Vassilakis, Costas, Kolokotronis, Nicholas.  2020.  A Trust Management System for the IoT domain. 2020 IEEE World Congress on Services (SERVICES). :183–188.
In modern internet-scale computing, interaction between a large number of parties that are not known a-priori is predominant, with each party functioning both as a provider and consumer of services and information. In such an environment, traditional access control mechanisms face considerable limitations, since granting appropriate authorizations to each distinct party is infeasible both due to the high number of grantees and the dynamic nature of interactions. Trust management has emerged as a solution to this issue, offering aids towards the automated verification of actions against security policies. In this paper, we present a trust- and risk-based approach to security, which considers status, behavior and associated risk aspects in the trust computation process, while additionally it captures user-to-user trust relationships which are propagated to the device level, through user-to-device ownership links.
2021-07-28
Wang, Wenhui, Chen, Liandong, Han, Longxi, Zhou, Zhihong, Xia, Zhengmin, Chen, Xiuzhen.  2020.  Vulnerability Assessment for ICS system Based on Zero-day Attack Graph. 2020 International Conference on Intelligent Computing, Automation and Systems (ICICAS). :1—5.
The numerous attacks on ICS systems have made severe threats to critical infrastructure. Extensive studies have focussed on the risk assessment of discovering vulnerabilities. However, to identify Zero-day vulnerabilities is challenging because they are unknown to defenders. Here we sought to measure ICS system zero-day risk by building an enhanced attack graph for expected attack path exploiting zero-day vulnerability. In this study, we define the security metrics of Zero-day vulnerability for an ICS. Then we created a Zero-day attack graph to guide how to harden the system by measuring attack paths that exploiting zero-day vulnerabilities. Our studies identify the vulnerability assessment method on ICS systems considering Zero-day Vulnerability by zero-day attack graph. Together, our work is essential to ICS systems security. By assessing unknown vulnerability risk to close the imbalance between attackers and defenders.
2021-07-27
Sengupta, Poushali, Paul, Sudipta, Mishra, Subhankar.  2020.  BUDS: Balancing Utility and Differential Privacy by Shuffling. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–7.
Balancing utility and differential privacy by shuffling or BUDS is an approach towards crowd sourced, statistical databases, with strong privacy and utility balance using differential privacy theory. Here, a novel algorithm is proposed using one-hot encoding and iterative shuffling with the loss estimation and risk minimization techniques, to balance both the utility and privacy. In this work, after collecting one-hot encoded data from different sources and clients, a step of novel attribute shuffling technique using iterative shuffling (based on the query asked by the analyst) and loss estimation with an updation function and risk minimization produces a utility and privacy balanced differential private report. During empirical test of balanced utility and privacy, BUDS produces ε = 0.02 which is a very promising result. Our algorithm maintains a privacy bound of ε = ln[t/((n1-1)S)] and loss bound of c'\textbackslashtextbareln[t/((n1-1)S)]-1\textbackslashtextbar.
2021-06-24
Chen, Sen, Fan, Lingling, Meng, Guozhu, Su, Ting, Xue, Minhui, Xue, Yinxing, Liu, Yang, Xu, Lihua.  2020.  An Empirical Assessment of Security Risks of Global Android Banking Apps. 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE). :1310—1322.
Mobile banking apps, belonging to the most security-critical app category, render massive and dynamic transactions susceptible to security risks. Given huge potential financial loss caused by vulnerabilities, existing research lacks a comprehensive empirical study on the security risks of global banking apps to provide useful insights and improve the security of banking apps. Since data-related weaknesses in banking apps are critical and may directly cause serious financial loss, this paper first revisits the state-of-the-art available tools and finds that they have limited capability in identifying data-related security weaknesses of banking apps. To complement the capability of existing tools in data-related weakness detection, we propose a three-phase automated security risk assessment system, named Ausera, which leverages static program analysis techniques and sensitive keyword identification. By leveraging Ausera, we collect 2,157 weaknesses in 693 real-world banking apps across 83 countries, which we use as a basis to conduct a comprehensive empirical study from different aspects, such as global distribution and weakness evolution during version updates. We find that apps owned by subsidiary banks are always less secure than or equivalent to those owned by parent banks. In addition, we also track the patching of weaknesses and receive much positive feedback from banking entities so as to improve the security of banking apps in practice. We further find that weaknesses derived from outdated versions of banking apps or third-party libraries are highly prone to being exploited by attackers. To date, we highlight that 21 banks have confirmed the weaknesses we reported (including 126 weaknesses in total). We also exchange insights with 7 banks, such as HSBC in UK and OCBC in Singapore, via in-person or online meetings to help them improve their apps. We hope that the insights developed in this paper will inform the communities about the gaps among multiple stakeholders, including banks, academic researchers, and third-party security companies.
2021-06-01
Xing, Hang, Zhou, Chunjie, Ye, Xinhao, Zhu, Meipan.  2020.  An Edge-Cloud Synergy Integrated Security Decision-Making Method for Industrial Cyber-Physical Systems. 2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS). :989–995.
With the introduction of new technologies such as cloud computing and big data, the security issues of industrial cyber-physical systems (ICPSs) have become more complicated. Meanwhile, a lot of current security research lacks adaptation to industrial system upgrades. In this paper, an edge-cloud synergy framework for security decision-making is proposed, which takes advantage of the huge convenience and advantages brought by cloud computing and edge computing, and can make security decisions on a global perspective. Under this framework, a combination of Bayesian network-based risk assessment and stochastic game model-based security decision-making is proposed to generate an optimal defense strategy to minimize system losses. This method trains models in the clouds and infers at the edge computing nodes to achieve rapid defense strategy generation. Finally, a case study on the hardware-in-the-loop simulation platform proves the feasibility of the approach.