Visible to the public Biblio

Found 228 results

Filters: Keyword is risk management  [Clear All Filters]
2017-05-18
Dupuis, Marc, Khadeer, Samreen.  2016.  Curiosity Killed the Organization: A Psychological Comparison Between Malicious and Non-Malicious Insiders and the Insider Threat. Proceedings of the 5th Annual Conference on Research in Information Technology. :35–40.

Insider threats remain a significant problem within organizations, especially as industries that rely on technology continue to grow. Traditionally, research has been focused on the malicious insider; someone that intentionally seeks to perform a malicious act against the organization that trusts him or her. While this research is important, more commonly organizations are the victims of non-malicious insiders. These are trusted employees that are not seeking to cause harm to their employer; rather, they misuse systems-either intentional or unintentionally-that results in some harm to the organization. In this paper, we look at both by developing and validating instruments to measure the behavior and circumstances of a malicious insider versus a non-malicious insider. We found that in many respects their psychological profiles are very similar. The results are also consistent with other research on the malicious insider from a personality standpoint. We expand this and also find that trait negative affect, both its higher order dimension and the lower order dimensions, are highly correlated with insider threat behavior and circumstances. This paper makes four significant contributions: 1) Development and validation of survey instruments designed to measure the insider threat; 2) Comparison of the malicious insider with the non-malicious insider; 3) Inclusion of trait affect as part of the psychological profile of an insider; 4) Inclusion of a measure for financial well-being, and 5) The successful use of survey research to examine the insider threat problem.

2017-03-08
Nasir, M. A., Sultan, S., Nefti-Meziani, S., Manzoor, U..  2015.  Potential cyber-attacks against global oil supply chain. 2015 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–7.

The energy sector has been actively looking into cyber risk assessment at a global level, as it has a ripple effect; risk taken at one step in supply chain has an impact on all the other nodes. Cyber-attacks not only hinder functional operations in an organization but also waves damaging effects to the reputation and confidence among shareholders resulting in financial losses. Organizations that are open to the idea of protecting their assets and information flow and are equipped; enough to respond quickly to any cyber incident are the ones who prevail longer in global market. As a contribution we put forward a modular plan to mitigate or reduce cyber risks in global supply chain by identifying potential cyber threats at each step and identifying their immediate counterm easures.

Li, Sihuan, Hu, Lihui.  2015.  Risk assessment of agricultural supply chain based on AHP- FCS in Eastern Area of Hunan Province. 2015 International Conference on Logistics, Informatics and Service Sciences (LISS). :1–6.

In recent years, The vulnerability of agricultural products chain is been exposed because of the endlessly insecure events appeared in every areas and every degrees from the natural disasters on the each node operation of agricultural products supply chain in recently years. As an very important place of HUNAN Province because of its abundant agricultural products, the Eastern Area's security in agricultural products supply chain was related to the safety and stability of economic development in the entire region. In order to make the more objective, scientific, practical of risk management in the empirical analysis, This item is based on the AHP-FCS method to deal with the qualitative to quantitative analysis about risk management of agricultural product supply chain, to identify and evaluate the probability and severity of all the risk possibility.

Polemi, N., Papastergiou, S..  2015.  Current efforts in ports and supply chains risk assessment. 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST). :349–354.

Port services and maritime supply chain processes depend upon complex interrelated ICT systems hosted in the ports' Critical Information Infrastructures (CIIs). Current research efforts for securing the dual nature (cyber-physical) of the ports and their supply chain partners are presented here.

Jianqiang, Gu, Shue, Mei, Weijun, Zhong.  2015.  Analyzing information security investment in networked supply chains. 2015 International Conference on Logistics, Informatics and Service Sciences (LISS). :1–5.

Security breaches and attacks are becoming a more critical and, simultaneously, a challenging problems for many firms in networked supply chains. A game theory-based model is developed to investigate how interdependent feature of information security risk influence the optimal strategy of firms to invest in information security. The equilibrium levels of information security investment under non-cooperative game condition are compared with socially optimal solutions. The results show that the infectious risks often induce firms to invest inefficiently whereas trust risks lead to overinvest in information security. We also find that firm's investment may not necessarily monotonous changes with infectious risks and trust risks in a centralized case. Furthermore, relative to the socially efficient level, firms facing infectious risks may invest excessively depending on whether trust risks is large enough.

Dai, Z., Li, Z. Y..  2015.  Fuzzy Optimization of Automobile Supply Chain Network of Considering Risks. 2015 Seventh International Symposium on Parallel Architectures Algorithms and Programming (PAAP). :134–138.

In this paper, an optimization model of automobile supply chain network with risks under fuzzy price is put forward. The supply chain network is composed of component suppliers, plants, and distribution centers. The total costs of automobile supply chain consist of variable costs, fixed costs, and transportation costs. The objective of this study is to minimize the risks of total profits. In order to deal with this model, this paper puts forward an approximation method to transform a continuous fuzzy problem into discrete fuzzy problem. The model is solved using Cplex 12.6. The results show that Cplex 12.6 can perfectly solve this model, the expected value and lower semi-variance of total profits converge with the increasing number of discretization points, the structure of automobile supply chain network keeps unchanged with the increasing number of discretization points.

2017-03-07
Dehghanniri, H., Letier, E., Borrion, H..  2015.  Improving security decision under uncertainty: A multidisciplinary approach. 2015 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–7.

Security decision-making is a critical task in tackling security threats affecting a system or process. It often involves selecting a suitable resolution action to tackle an identified security risk. To support this selection process, decision-makers should be able to evaluate and compare available decision options. This article introduces a modelling language that can be used to represent the effects of resolution actions on the stakeholders' goals, the crime process, and the attacker. In order to reach this aim, we develop a multidisciplinary framework that combines existing knowledge from the fields of software engineering, crime science, risk assessment, and quantitative decision analysis. The framework is illustrated through an application to a case of identity theft.

Bulbul, R., Ten, C. W., Wang, L..  2015.  Prioritization of MTTC-based combinatorial evaluation for hypothesized substations outages. 2015 IEEE Power Energy Society General Meeting. :1–5.

Exhaustive enumeration of a S-select-k problem for hypothesized substations outages can be practically infeasible due to exponential growth of combinations as both S and k numbers increase. This enumeration of worst-case substations scenarios from the large set, however, can be improved based on the initial selection sets with the root nodes and segments. In this paper, the previous work of the reverse pyramid model (RPM) is enhanced with prioritization of root nodes and defined segmentations of substation list based on mean-time-to-compromise (MTTC) value that is associated with each substation. Root nodes are selected based on the threshold values of the substation ranking on MTTC values and are segmented accordingly from the root node set. Each segmentation is then being enumerated with S-select-k module to identify worst-case scenarios. The lowest threshold value on the list, e.g., a substation with no assignment of MTTC or extremely low number, is completely eliminated. Simulation shows that this approach demonstrates similar outcome of the risk indices among all randomly generated MTTC of the IEEE 30-bus system.

Onwubiko, C..  2015.  Cyber security operations centre: Security monitoring for protecting business and supporting cyber defense strategy. 2015 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–10.

Cyber security operations centre (CSOC) is an essential business control aimed to protect ICT systems and support an organisation's Cyber Defense Strategy. Its overarching purpose is to ensure that incidents are identified and managed to resolution swiftly, and to maintain safe & secure business operations and services for the organisation. A CSOC framework is proposed comprising Log Collection, Analysis, Incident Response, Reporting, Personnel and Continuous Monitoring. Further, a Cyber Defense Strategy, supported by the CSOC framework, is discussed. Overlaid atop the strategy is the well-known Her Majesty's Government (HMG) Protective Monitoring Controls (PMCs). Finally, the difficulty and benefits of operating a CSOC are explained.

2017-02-27
Lever, K. E., Kifayat, K., Merabti, M..  2015.  Identifying interdependencies using attack graph generation methods. 2015 11th International Conference on Innovations in Information Technology (IIT). :80–85.

Information and communication technologies have augmented interoperability and rapidly advanced varying industries, with vast complex interconnected networks being formed in areas such as safety-critical systems, which can be further categorised as critical infrastructures. What also must be considered is the paradigm of the Internet of Things which is rapidly gaining prevalence within the field of wireless communications, being incorporated into areas such as e-health and automation for industrial manufacturing. As critical infrastructures and the Internet of Things begin to integrate into much wider networks, their reliance upon communication assets by third parties to ensure collaboration and control of their systems will significantly increase, along with system complexity and the requirement for improved security metrics. We present a critical analysis of the risk assessment methods developed for generating attack graphs. The failings of these existing schemas include the inability to accurately identify the relationships and interdependencies between the risks and the reduction of attack graph size and generation complexity. Many existing methods also fail due to the heavy reliance upon the input, identification of vulnerabilities, and analysis of results by human intervention. Conveying our work, we outline our approach to modelling interdependencies within large heterogeneous collaborative infrastructures, proposing a distributed schema which utilises network modelling and attack graph generation methods, to provide a means for vulnerabilities, exploits and conditions to be represented within a unified model.

Santini, R., Foglietta, C., Panzieri, S..  2015.  A graph-based evidence theory for assessing risk. 2015 18th International Conference on Information Fusion (Fusion). :1467–1474.

The increasing exploitation of the internet leads to new uncertainties, due to interdependencies and links between cyber and physical layers. As an example, the integration between telecommunication and physical processes, that happens when the power grid is managed and controlled, yields to epistemic uncertainty. Managing this uncertainty is possible using specific frameworks, usually coming from fuzzy theory such as Evidence Theory. This approach is attractive due to its flexibility in managing uncertainty by means of simple rule-based systems with data coming from heterogeneous sources. In this paper, Evidence Theory is applied in order to evaluate risk. Therefore, the authors propose a frame of discernment with a specific property among the elements based on a graph representation. This relationship leads to a smaller power set (called Reduced Power Set) that can be used as the classical power set, when the most common combination rules, such as Dempster or Smets, are applied. The paper demonstrates how the use of the Reduced Power Set yields to more efficient algorithms for combining evidences and to application of Evidence Theory for assessing risk.

Ismail, Z., Leneutre, J., Bateman, D., Chen, L..  2015.  A Game-Theoretical Model for Security Risk Management of Interdependent ICT and Electrical Infrastructures. 2015 IEEE 16th International Symposium on High Assurance Systems Engineering. :101–109.

The communication infrastructure is a key element for management and control of the power system in the smart grid. The communication infrastructure, which can include equipment using off-the-shelf vulnerable operating systems, has the potential to increase the attack surface of the power system. The interdependency between the communication and the power system renders the management of the overall security risk a challenging task. In this paper, we address this issue by presenting a mathematical model for identifying and hardening the most critical communication equipment used in the power system. Using non-cooperative game theory, we model interactions between an attacker and a defender. We derive the minimum defense resources required and the optimal strategy of the defender that minimizes the risk on the power system. Finally, we evaluate the correctness and the efficiency of our model via a case study.

Li, X., He, Z., Zhang, S..  2015.  Robust optimization of risk for power system based on information gap decision theory. 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT). :200–204.

Risk-control optimization has great significance for security of power system. Usually the probabilistic uncertainties of parameters are considered in the research of risk optimization of power system. However, the method of probabilistic uncertainty description will be insufficient in the case of lack of sample data. Thus non-probabilistic uncertainties of parameters should be considered, and will impose a significant influence on the results of optimization. To solve this problem, a robust optimization operation method of power system risk-control is presented in this paper, considering the non-probabilistic uncertainty of parameters based on information gap decision theory (IGDT). In the method, loads are modeled as the non-probabilistic uncertainty parameters, and the model of robust optimization operation of risk-control is presented. By solving the model, the maximum fluctuation of the pre-specified target can be obtained, and the strategy of this situation can be obtained at the same time. The proposed model is applied to the IEEE-30 system of risk-control by simulation. The results can provide the valuable information for operating department to risk management.

Abd, S. K., Salih, R. T., Al-Haddad, S. A. R., Hashim, F., Abdullah, A. B. H., Yussof, S..  2015.  Cloud computing security risks with authorization access for secure Multi-Tenancy based on AAAS protocol. TENCON 2015 - 2015 IEEE Region 10 Conference. :1–5.

Many cloud security complexities can be concerned as a result of its open system architecture. One of these complexities is multi-tenancy security issue. This paper discusses and addresses the most common public cloud security complexities focusing on Multi-Tenancy security issue. Multi-tenancy is one of the most important security challenges faced by public cloud services providers. Therefore, this paper presents a secure multi-tenancy architecture using authorization model Based on AAAS protocol. By utilizing cloud infrastructure, access control can be provided to various cloud information and services by our suggested authorization system. Each business can offer several cloud services. These cloud services can cooperate with other services which can be related to the same organization or different one. Moreover, these cooperation agreements are supported by our suggested system.

Zheng, Y., Zheng, S..  2015.  Cyber Security Risk Assessment for Industrial Automation Platform. 2015 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP). :341–344.

Due to the fact that the cyber security risks exist in industrial control system, risk assessment on Industrial Automation Platform (IAP) is discussed in this paper. The cyber security assessment model for IAP is built based on relevant standards at abroad. Fuzzy analytic hierarchy process and fuzzy comprehensive evaluation method based on entropy theory are utilized to evaluate the communication links' risk of IAP software. As a result, the risk weight of communication links which have impacts on platform and the risk level of this platform are given for further study on protective strategy. The assessment result shows that the methods used can evaluate this platform efficiently and practically.

Aydin, M., Jacob, J..  2015.  Cloud-COVER: Using User Security Attribute Preferences and Propagation Analysis to Prioritize Threats to Systems. 2015 European Intelligence and Security Informatics Conference. :53–60.

We present Cloud-COVER (Controls and Orderings for Vulnerabilities and ExposuRes), a cloud security threat modelling tool. Cloud-COVER takes input from a user about their deployment, requiring information about the data, instances, connections, their properties, and the importance of various security attributes. This input is used to analyse the relevant threats, and the way they propagate through the system. They are then presented to the user, ordered according to the security attributes they have prioritised, along with the best countermeasures to secure against the dangers listed.

2017-02-23
Fisk, G., Ardi, C., Pickett, N., Heidemann, J., Fisk, M., Papadopoulos, C..  2015.  Privacy Principles for Sharing Cyber Security Data. 2015 IEEE Security and Privacy Workshops. :193–197.

Sharing cyber security data across organizational boundaries brings both privacy risks in the exposure of personal information and data, and organizational risk in disclosing internal information. These risks occur as information leaks in network traffic or logs, and also in queries made across organizations. They are also complicated by the trade-offs in privacy preservation and utility present in anonymization to manage disclosure. In this paper, we define three principles that guide sharing security information across organizations: Least Disclosure, Qualitative Evaluation, and Forward Progress. We then discuss engineering approaches that apply these principles to a distributed security system. Application of these principles can reduce the risk of data exposure and help manage trust requirements for data sharing, helping to meet our goal of balancing privacy, organizational risk, and the ability to better respond to security with shared information.

2017-02-14
G. G. Granadillo, J. Garcia-Alfaro, H. Debar, C. Ponchel, L. R. Martin.  2015.  "Considering technical and financial impact in the selection of security countermeasures against Advanced Persistent Threats (APTs)". 2015 7th International Conference on New Technologies, Mobility and Security (NTMS). :1-6.

This paper presents a model to evaluate and select security countermeasures from a pool of candidates. The model performs industrial evaluation and simulations of the financial and technical impact associated to security countermeasures. The financial impact approach uses the Return On Response Investment (RORI) index to compare the expected impact of the attack when no response is enacted against the impact after applying security countermeasures. The technical impact approach evaluates the protection level against a threat, in terms of confidentiality, integrity, and availability. We provide a use case on malware attacks that shows the applicability of our model in selecting the best countermeasure against an Advanced Persistent Threat.

2015-05-06
Hardy, T.L..  2014.  Resilience: A holistic safety approach. Reliability and Maintainability Symposium (RAMS), 2014 Annual. :1-6.

Decreasing the potential for catastrophic consequences poses a significant challenge for high-risk industries. Organizations are under many different pressures, and they are continuously trying to adapt to changing conditions and recover from disturbances and stresses that can arise from both normal operations and unexpected events. Reducing risks in complex systems therefore requires that organizations develop and enhance traits that increase resilience. Resilience provides a holistic approach to safety, emphasizing the creation of organizations and systems that are proactive, interactive, reactive, and adaptive. This approach relies on disciplines such as system safety and emergency management, but also requires that organizations develop indicators and ways of knowing when an emergency is imminent. A resilient organization must be adaptive, using hands-on activities and lessons learned efforts to better prepare it to respond to future disruptions. It is evident from the discussions of each of the traits of resilience, including their limitations, that there are no easy answers to reducing safety risks in complex systems. However, efforts to strengthen resilience may help organizations better address the challenges associated with the ever-increasing complexities of their systems.

Kessler, G.C., Ramsay, J.D..  2014.  A Proposed Curriculum in Cybersecurity Education Targeting Homeland Security Students. System Sciences (HICSS), 2014 47th Hawaii International Conference on. :4932-4937.

Homeland Security (HS) is a growing field of study in the U.S. today, generally covering risk management, terrorism studies, policy development, and other topics related to the broad field. Information security threats to both the public and private sectors are growing in intensity, frequency, and severity, and are a very real threat to the security of the nation. While there are many models for information security education at all levels of higher education, these programs are invariably offered as a technical course of study, these curricula are generally not well suited to HS students. As a result, information systems and cyber security principles are under represented in the typical HS program. The authors propose a course of study in cyber security designed to capitalize on the intellectual strengths of students in this discipline and that are consistent with the broad suite of professional needs in this discipline.

2015-05-05
Vellaithurai, C., Srivastava, A., Zonouz, S., Berthier, R..  2015.  CPIndex: Cyber-Physical Vulnerability Assessment for Power-Grid Infrastructures. Smart Grid, IEEE Transactions on. 6:566-575.

To protect complex power-grid control networks, power operators need efficient security assessment techniques that take into account both cyber side and the power side of the cyber-physical critical infrastructures. In this paper, we present CPINDEX, a security-oriented stochastic risk management technique that calculates cyber-physical security indices to measure the security level of the underlying cyber-physical setting. CPINDEX installs appropriate cyber-side instrumentation probes on individual host systems to dynamically capture and profile low-level system activities such as interprocess communications among operating system assets. CPINDEX uses the generated logs along with the topological information about the power network configuration to build stochastic Bayesian network models of the whole cyber-physical infrastructure and update them dynamically based on the current state of the underlying power system. Finally, CPINDEX implements belief propagation algorithms on the created stochastic models combined with a novel graph-theoretic power system indexing algorithm to calculate the cyber-physical index, i.e., to measure the security-level of the system's current cyber-physical state. The results of our experiments with actual attacks against a real-world power control network shows that CPINDEX, within few seconds, can efficiently compute the numerical indices during the attack that indicate the progressing malicious attack correctly.
 

Falcon, R., Abielmona, R., Billings, S., Plachkov, A., Abbass, H..  2014.  Risk management with hard-soft data fusion in maritime domain awareness. Computational Intelligence for Security and Defense Applications (CISDA), 2014 Seventh IEEE Symposium on. :1-8.

Enhanced situational awareness is integral to risk management and response evaluation. Dynamic systems that incorporate both hard and soft data sources allow for comprehensive situational frameworks which can supplement physical models with conceptual notions of risk. The processing of widely available semi-structured textual data sources can produce soft information that is readily consumable by such a framework. In this paper, we augment the situational awareness capabilities of a recently proposed risk management framework (RMF) with the incorporation of soft data. We illustrate the beneficial role of the hard-soft data fusion in the characterization and evaluation of potential vessels in distress within Maritime Domain Awareness (MDA) scenarios. Risk features pertaining to maritime vessels are defined a priori and then quantified in real time using both hard (e.g., Automatic Identification System, Douglas Sea Scale) as well as soft (e.g., historical records of worldwide maritime incidents) data sources. A risk-aware metric to quantify the effectiveness of the hard-soft fusion process is also proposed. Though illustrated with MDA scenarios, the proposed hard-soft fusion methodology within the RMF can be readily applied to other domains.
 

Toshiro Yano, E., Bhatt, P., Gustavsson, P.M., Ahlfeldt, R.-M..  2014.  Towards a Methodology for Cybersecurity Risk Management Using Agents Paradigm. Intelligence and Security Informatics Conference (JISIC), 2014 IEEE Joint. :325-325.

In order to deal with shortcomings of security management systems, this work proposes a methodology based on agents paradigm for cybersecurity risk management. In this approach a system is decomposed in agents that may be used to attain goals established by attackers. Threats to business are achieved by attacker's goals in service and deployment agents. To support a proactive behavior, sensors linked to security mechanisms are analyzed accordingly with a model for Situational Awareness(SA)[4].
 

Oweis, N.E., Owais, S.S., Alrababa, M.A., Alansari, M., Oweis, W.G..  2014.  A survey of Internet security risk over social networks. Computer Science and Information Technology (CSIT), 2014 6th International Conference on. :1-4.

The Communities vary from country to country. There are civil societies and rural communities, which also differ in terms of geography climate and economy. This shows that the use of social networks vary from region to region depending on the demographics of the communities. So, in this paper, we researched the most important problems of the Social Network, as well as the risk which is based on the human elements. We raised the problems of social networks in the transformation of societies to another affected by the global economy. The social networking integration needs to strengthen social ties that lead to the existence of these problems. For this we focused on the Internet security risks over the social networks. And study on Risk Management, and then look at resolving various problems that occur from the use of social networks.
 

Hyejung Moon, Hyun Suk Cho, Seo Hwa Jeong, Jangho Park.  2014.  Policy Design Based on Risk at Big Data Era: Case Study of Privacy Invasion in South Korea. Big Data (BigData Congress), 2014 IEEE International Congress on. :756-759.

This paper has conducted analyzing the accident case of data spill to study policy issues for ICT security from a social science perspective focusing on risk. The results from case analysis are as follows. First, ICT risk can be categorized 'severe, strong, intensive and individual' from the level of both probability and impact. Second, strategy of risk management can be designated 'avoid, transfer, mitigate, accept' by understanding their own culture type of relative group such as 'hierarchy, egalitarianism, fatalism and individualism'. Third, personal data has contained characteristics of big data such like 'volume, velocity, variety' for each risk situation. Therefore, government needs to establish a standing organization responsible for ICT risk policy and management in a new big data era. And the policy for ICT risk management needs to balance in considering 'technology, norms, laws, and market' in big data era.