Biblio
Cyber-attacks and intrusions in cyber-physical control systems are, currently, difficult to reliably prevent. Knowing a system's vulnerabilities and implementing static mitigations is not enough, since threats are advancing faster than the pace at which static cyber solutions can counteract. Accordingly, the practice of cybersecurity needs to ensure that intrusion and compromise do not result in system or environment damage or loss. In a previous paper [2], we described the Cyberspace Security Econometrics System (CSES), which is a stakeholder-aware and economics-based risk assessment method for cybersecurity. CSES allows an analyst to assess a system in terms of estimated loss resulting from security breakdowns. In this paper, we describe two new related contributions: 1) We map the Cyberspace Security Econometrics System (CSES) method to the evaluation and mitigation steps described by the NIST Guide to Industrial Control Systems (ICS) Security, Special Publication 800-82r2. Hence, presenting an economics-based and stakeholder-aware risk evaluation method for the implementation of the NIST-SP-800-82 guide; and 2) We describe the application of this tailored method through the use of a fictitious example of a critical infrastructure system of an electric and gas utility.
We present a formal method for computing the best security provisioning for Internet of Things (IoT) scenarios characterized by a high degree of mobility. The security infrastructure is intended as a security resource allocation plan, computed as the solution of an optimization problem that minimizes the risk of having IoT devices not monitored by any resource. We employ the shortfall as a risk measure, a concept mostly used in the economics, and adapt it to our scenario. We show how to compute and evaluate an allocation plan, and how such security solutions address the continuous topology changes that affect an IoT environment.
Due to flexibility, low cost and rapid deployment, wireless sensor networks (WSNs)have been drawing more and more interest from governments, researchers, application developers, and manufacturers in recent years. Nowadays, we are in the age of industry 4.0, in which the traditional industrial control systems will be connected with each other and provide intelligent manufacturing. Therefore, WSNs can play an extremely crucial role to monitor the environment and condition parameters for smart factories. Nevertheless, the introduction of the WSNs reveals the weakness, especially for industrial applications. Through the vulnerability of IWSNs, the latent attackers were likely to invade the information system. Risk evaluation is an overwhelmingly efficient method to reduce the risk of information system in order to an acceptable level. This paper aim to study the security issues about IWSNs as well as put forward a practical solution to evaluate the risk of IWSNs, which can guide us to make risk evaluation process and improve the security of IWSNs through appropriate countermeasures.
The factors that threaten electric power information network are analyzed. Aiming at the weakness of being unable to provide numerical value of risk, this paper presents the evaluation index system, the evaluation model and method of network security based on multilevel fuzzy comprehensive judgment. The steps and method of security evaluation by the synthesis evaluation model are provided. The results show that this method is effective to evaluate the risk of electric power information network.
The software supply chain is a source of cybersecurity risk for many commercial and government organizations. Public data may be used to inform automated tools for detecting software supply chain risk during continuous integration and deployment. We link data from the National Vulnerability Database (NVD) with open version control data for the open source project OpenSSL, a widely used secure networking library that made the news when a significant vulnerability, Heartbleed, was discovered in 2014. We apply the Alhazmi-Malaiya Logistic (AML) model for software vulnerability discovery to this case. This model predicts a sigmoid cumulative vulnerability discovery function over time. Some versions of OpenSSL do not conform to the predictions of the model because they contain a temporary plateau in the cumulative vulnerability discovery plot. This temporary plateau feature is an empirical signature of a security failure mode that may be useful in future studies of software supply chain risk.
Information security policies are not easy to create unless organizations explicitly recognize the various steps required in the development process of an information security policy, especially in institutions of higher education that use enormous amounts of IT. An improper development process or a copied security policy content from another organization might also fail to execute an effective job. The execution could be aimed at addressing an issue such as the non-compliance to applicable rules and regulations even if the replicated policy is properly developed, referenced, cited in laws or regulations and interpreted correctly. A generic framework was proposed to improve and establish the development process of security policies in institutions of higher education. The content analysis and cross-case analysis methods were used in this study in order to gain a thorough understanding of the information security policy development process in institutions of higher education.
This paper combines FMEA and n2 approaches in order to create a methodology to determine risks associated with the components of an underwater system. This methodology is based on defining the risk level related to each one of the components and interfaces that belong to a complex underwater system. As far as the authors know, this approach has not been reported before. The resulting information from the mentioned procedures is combined to find the system's critical elements and interfaces that are most affected by each failure mode. Finally, a calculation is performed to determine the severity level of each failure mode based on the system's critical elements.
The paper suggests several techniques for computer network risk assessment based on Common Vulnerability Scoring System (CVSS) and attack modeling. Techniques use a set of integrated security metrics and consider input data from security information and event management (SIEM) systems. Risk assessment techniques differ according to the used input data. They allow to get risk assessment considering requirements to the accuracy and efficiency. Input data includes network characteristics, attacks, attacker characteristics, security events and countermeasures. The tool that implements these techniques is presented. Experiments demonstrate operation of the techniques for different security situations.
Quantitative risk assessment is a critical first step in risk management and assured design of networked computer systems. It is challenging to evaluate the marginal probabilities of target states/conditions when using a probabilistic attack graph to represent all possible attack paths and the probabilistic cause-consequence relations among nodes. The brute force approach has the exponential complexity and the belief propagation method gives approximation when the corresponding factor graph has cycles. To improve the approximation accuracy, a region-based method is adopted, which clusters some highly dependent nodes into regions and messages are passed among regions. Experiments are conducted to compare the performance of the different methods.
Traditional information Security Risk Assessment algorithms are mainly used for evaluating small scale of information system, not suitable for massive information systems in Energy Internet. To solve the problem, this paper proposes an Information Security Risk Algorithm based on Dynamic Risk Propagation (ISRADRP). ISRADRP firstly divides information systems in the Energy Internet into different partitions according to their logical network location. Then, ISRADRP computes each partition's risk value without considering threat propagation effect via RM algorithm. Furthermore, ISRADRP calculates inside and outside propagation risk value for each partition according to Dependency Structure Matrix. Finally, the security bottleneck of systems will be identified and the overall risk value of information system will be obtained.
Supervisory control and data acquisition (SCADA) systems are the key driver for critical infrastructures and industrial facilities. Cyber-attacks to SCADA networks may cause equipment damage or even fatalities. Identifying risks in SCADA networks is critical to ensuring the normal operation of these industrial systems. In this paper we propose a Bayesian network-based cyber-security risk assessment model to dynamically and quantitatively assess the security risk level in SCADA networks. The major distinction of our work is that the proposed risk assessment method can learn model parameters from historical data and then improve assessment accuracy by incrementally learning from online observations. Furthermore, our method is able to assess the risk caused by unknown attacks. The simulation results demonstrate that the proposed approach is effective for SCADA security risk assessment.
Establishing and operating an Information Security Management System (ISMS) to protect information values and information systems is in itself a challenge for larger enterprises and small and medium sized businesses alike. A high level of automation is required to reduce operational efforts to an acceptable level when implementing an ISMS. In this paper we present the ADAMANT framework to increase automation in information security management as a whole by establishing a continuous risk-driven and context-aware ISMS that not only automates security controls but considers all highly interconnected information security management tasks. We further illustrate how ADAMANT is suited to establish an ISO 27001 compliant ISMS for small and medium-sized enterprises and how not only the monitoring of security controls but a majority of ISMS related activities can be supported through automated process execution and workflow enactment.
IT system risk assessments are indispensable due to increasing cyber threats within our ever-growing IT systems. Moreover, laws and regulations urge organizations to conduct risk assessments regularly. Even though there exist several risk management frameworks and methodologies, they are in general high level, not defining the risk metrics, risk metrics values and the detailed risk assessment formulas for different risk views. To address this need, we define a novel risk assessment methodology specific to IT systems. Our model is quantitative, both asset and vulnerability centric and defines low and high level risk metrics. High level risk metrics are defined in two general categories; base and attack graph-based. In our paper, we provide a detailed explanation of formulations in each category and make our implemented software publicly available for those who are interested in applying the proposed methodology to their IT systems.
In this paper, we investigate detectability and identifiability of attacks on linear dynamical systems that are subjected to external disturbances. We generalize a concept for a security index, which was previously introduced for static systems. The index exactly quantifies the resources necessary for targeted attacks to be undetectable and unidentifiable in the presence of disturbances. This information is useful for both risk assessment and for the design of anomaly detectors. Finally, we show how techniques from the fault detection literature can be used to decouple disturbances and to identify attacks, under certain sparsity constraints.
Primary user emulation (PUE) attack is one of the main threats affecting cognitive radio (CR) networks. The PUE can forge the same signal as the real primary user (PU) in order to use the licensed channel and cause deny of service (DoS). Therefore, it is important to locate the position of the PUE in order to stop and avoid any further attack. Several techniques have been proposed for localization, including the received signal strength indication RSSI, Triangulation, and Physical Network Layer Coding. However, the area surrounding the real PU is always affected by uncertainty. This uncertainty can be described as a lost (cost) function and conditional probability to be taken into consideration while proclaiming if a PU/PUE is the real PU or not. In this paper, we proposed a combination of a Bayesian model and trilateration technique. In the first part a trilateration technique is used to have a good approximation of the PUE position making use of the RSSI between the anchor nodes and the PU/PUE. In the second part, a Bayesian decision theory is used to claim the legitimacy of the PU based on the lost function and the conditional probability to help to determine the existence of the PUE attacker in the uncertainty area.
The Internet of Things (IoT) connects not only computers and mobile devices, but it also interconnects smart buildings, homes, and cities, as well as electrical grids, gas, and water networks, automobiles, airplanes, etc. However, IoT applications introduce grand security challenges due to the increase in the attack surface. Current security approaches do not handle cybersecurity from a holistic point of view; hence a systematic cybersecurity mechanism needs to be adopted when designing IoTbased applications. In this work, we present a risk management framework to deploy secure IoT-based applications for Smart Infrastructures at the design time and the runtime. At the design time, we propose a risk management method that is appropriate for smart infrastructures. At the design time, our framework relies on the Anomaly Behavior Analysis (ABA) methodology enabled by the Autonomic Computing paradigm and an intrusion detection system to detect any threat that can compromise IoT infrastructures by. Our preliminary experimental results show that our framework can be used to detect threats and protect IoT premises and services.
This brief paper reports on an early stage ongoing PhD project in the field of cyber-physical security in health care critical infrastructures. The research overall aims to develop a methodology that will increase the ability of secure recovery of health critical infrastructures. This ambitious or reckless attempt, as it is currently at an early stage, in this paper, tries to answer why cyber-physical security for health care infrastructures is important and of scientific interest. An initial PhD project methodology and expected outcomes are also discussed. The report concludes with challenges that emerge and possible future directions.
We evaluated the support proposed by the RSO to represent graphically our EAM-ISSRM (Enterprise Architecture Management - Information System Security Risk Management) integrated model. The evaluation of the RSO visual notation has been done at two different levels: completeness with regards to the EAM-ISSRM integrated model (Section III) and cognitive effectiveness, relying on the nine principles established by D. Moody ["The 'Physics' of Notations: Toward a Scientific Basis for Constructing Visual Notations in Software Engineering," IEEE Trans. Softw. Eng., vol. 35, no. 6, pp. 756-779, Nov. 2009] (Section IV). Regarding completeness, the coverage of the EAMISSRM integrated model by the RSO is complete apart from 'Event'. As discussed in Section III, this lack is negligible and we can consider the RSO as an appropriate notation to support the EAM-ISSRM integrated model from a completeness point of view. Regarding cognitive effectiveness, many gaps have been identified with regards to the nine principle established by Moody. Although no quantitative analysis has been performed to objectify this conclusion, the RSO can decently not be considered as an appropriate notation from a cognitive effectiveness point of view and there is room to propose a notation better on this aspect. This paper is focused on assessing the RSO without suggesting improvements based on the conclusions drawn. As a consequence, our objective for future work is to propose a more cognitive effective visual notation for the EAM-ISSRM integrated model. The approach currently considered is to operationalize Moody's principles into concrete metrics and requirements, taking into account the needs and profile of the target group of our notation (information security risk managers) through personas development and user experience map. With such an approach, we will be able to make decisions on the necessary trade-offs about our visual syntax, taking care of a specific context. We also aim at valida- ing our proposal(s) with the help of tools and approaches extracted from cognitive psychology research applied to HCI domain (e.g., eye tracking, heuristic evaluation, user experience evaluation…).
Cascading failure is an intrinsic threat of power grid to cause enormous cost of society, and it is very challenging to be analyzed. The risk of cascading failure depends both on its probability and the severity of consequence. It is impossible to analyze all of the intrinsic attacks, only the critical and high probability initial events should be found to estimate the risk of cascading failure efficiently. To recognize the critical and high probability events, a cascading failure analysis model for power transmission grid is established based on complex network theory (CNT) in this paper. The risk coefficient of transmission line considering the betweenness, load rate and changeable outage probability is proposed to determine the initial events of power grid. The development tendency of cascading failure is determined by the network topology, the power flow and boundary conditions. The indicators of expected percentage of load loss and line cut are used to estimate the risk of cascading failure caused by the given initial malfunction of power grid. Simulation results from the IEEE RTS-79 test system show that the risk of cascading failure has close relations with the risk coefficient of transmission lines. The value of risk coefficient could be useful to make vulnerability assessment and to design specific action to reduce the topological weakness and the risk of cascading failure of power grid.
Cyber resilient organizations, their functions and computing infrastructures, should be tolerant towards rapid and unexpected changes in the environment. Information security is an organization-wide common mission; whose success strongly depends on efficient knowledge sharing. For this purpose, semantic wikis have proved their strength as a flexible collaboration and knowledge sharing platforms. However, there has not been notable academic research on how semantic wikis could be used as information security management platform in organizations for improved cyber resilience. In this paper, we propose to use semantic wiki as an agile information security management platform. More precisely, the wiki contents are based on the structured model of the NIST Special Publication 800-53 information security control catalogue that is extended in the research with the additional properties that support the information security management and especially the security control implementation. We present common uses cases to manage the information security in organizations and how the use cases can be implemented using the semantic wiki platform. As organizations seek cyber resilience, where focus is in the availability of cyber-related assets and services, we extend the control selection with option to focus on availability. The results of the study show that a semantic wiki based information security management and collaboration platform can provide a cost-efficient solution for improved cyber resilience, especially for small and medium sized organizations that struggle to develop information security with the limited resources.
Given a model with multiple input parameters, and multiple possible sources for collecting data for those parameters, a data collection strategy is a way of deciding from which sources to sample data, in order to reduce the variance on the output of the model. Cain and Van Moorsel have previously formulated the problem of optimal data collection strategy, when each arameter can be associated with a prior normal distribution, and when sampling is associated with a cost. In this paper, we present ADaCS, a new tool built as an extension of PRISM, which automatically analyses all possible data collection strategies for a model, and selects the optimal one. We illustrate ADaCS on attack trees, which are a structured approach to analyse the impact and the likelihood of success of attacks and defenses on computer and socio-technical systems. Furthermore, we introduce a new strategy exploration heuristic that significantly improves on a brute force approach.
Massively Open Online Courses (MOOCs) provide a unique opportunity to reach out to students who would not normally be reached by alleviating the need to be physically present in the classroom. However, teaching software security coursework outside of a classroom setting can be challenging. What are the challenges when converting security material from an on-campus course to the MOOC format? The goal of this research is to assist educators in constructing software security coursework by providing a comparison of classroom courses and MOOCs. In this work, we compare demographic information, student motivations, and student results from an on-campus software security course and a MOOC version of the same course. We found that the two populations of students differed, with the MOOC reaching a more diverse set of students than the on-campus course. We found that students in the on-campus course had higher quiz scores, on average, than students in the MOOC. Finally, we document our experience running the courses and what we would do differently to assist future educators constructing similar MOOC's.