Visible to the public Biblio

Found 228 results

Filters: Keyword is risk management  [Clear All Filters]
2021-05-13
Shu, Fei, Chen, Shuting, Li, Feng, Zhang, JianYe, Chen, Jia.  2020.  Research and implementation of network attack and defense countermeasure technology based on artificial intelligence technology. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). :475—478.
Using artificial intelligence technology to help network security has become a major trend. At present, major countries in the world have successively invested R & D force in the attack and defense of automatic network based on artificial intelligence. The U.S. Navy, the U.S. air force, and the DOD strategic capabilities office have invested heavily in the development of artificial intelligence network defense systems. DARPA launched the network security challenge (CGC) to promote the development of automatic attack system based on artificial intelligence. In the 2016 Defcon final, mayhem (the champion of CGC in 2014), an automatic attack team, participated in the competition with 14 human teams and once defeated two human teams, indicating that the automatic attack method generated by artificial intelligence system can scan system defects and find loopholes faster and more effectively than human beings. Japan's defense ministry also announced recently that in order to strengthen the ability to respond to network attacks, it will introduce artificial intelligence technology into the information communication network defense system of Japan's self defense force. It can be predicted that the deepening application of artificial intelligence in the field of network attack and defense may bring about revolutionary changes and increase the imbalance of the strategic strength of cyberspace in various countries. Therefore, it is necessary to systematically investigate the current situation of network attack and defense based on artificial intelligence at home and abroad, comprehensively analyze the development trend of relevant technologies at home and abroad, deeply analyze the development outline and specification of artificial intelligence attack and defense around the world, and refine the application status and future prospects of artificial intelligence attack and defense, so as to promote the development of artificial intelligence attack and Defense Technology in China and protect the core interests of cyberspace, of great significance
Plappert, Christian, Zelle, Daniel, Gadacz, Henry, Rieke, Roland, Scheuermann, Dirk, Krauß, Christoph.  2021.  Attack Surface Assessment for Cybersecurity Engineering in the Automotive Domain. 2021 29th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). :266–275.
Connected smart cars enable new attacks that may have serious consequences. Thus, the development of new cars must follow a cybersecurity engineering process as defined for example in ISO/SAE 21434. A central part of such a process is the threat and risk assessment including an attack feasibility rating. In this paper, we present an attack surface assessment with focus on the attack feasibility rating compliant to ISO/SAE 21434. We introduce a reference architecture with assets constituting the attack surface, the attack feasibility rating for these assets, and the application of this rating on typical use cases. The attack feasibility rating assigns attacks and assets to an evaluation of the attacker dimensions such as the required knowledge and the feasibility of attacks derived from it. Our application of sample use cases shows how this rating can be used to assess the feasibility of an entire attack path. The attack feasibility rating can be used as a building block in a threat and risk assessment according to ISO/SAE 21434.
2021-04-27
Yermalovich, P., Mejri, M..  2020.  Information security risk assessment based on decomposition probability via Bayesian Network. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1–8.
Well-known approaches to risk analysis suggest considering the level of an information system risk as one frame in a film. This means that we only can perform a risk assessment for the current point in time. This article explores the idea of risk assessment in a future period, as a prediction of what we will see in the film later. In other words, the article presents an approach to predicting a potential future risk and suggests the idea of relying on forecasting the likelihood of an attack on information system assets. To establish the risk level at a selected time interval in the future, one has to perform a mathematical decomposition. To do this, we need to select the required information system parameters for the predictions and their statistical data for risk assessment. This method can be used to ensure more detailed budget planning when ensuring the protection of the information system. It can be also applied in case of a change of the information protection configuration to satisfy the accepted level of risk associated with projected threats and vulnerabilities.
2021-03-30
Ashiku, L., Dagli, C..  2020.  Agent Based Cybersecurity Model for Business Entity Risk Assessment. 2020 IEEE International Symposium on Systems Engineering (ISSE). :1—6.

Computer networks and surging advancements of innovative information technology construct a critical infrastructure for network transactions of business entities. Information exchange and data access though such infrastructure is scrutinized by adversaries for vulnerabilities that lead to cyber-attacks. This paper presents an agent-based system modelling to conceptualize and extract explicit and latent structure of the complex enterprise systems as well as human interactions within the system to determine common vulnerabilities of the entity. The model captures emergent behavior resulting from interactions of multiple network agents including the number of workstations, regular, administrator and third-party users, external and internal attacks, defense mechanisms for the network setting, and many other parameters. A risk-based approach to modelling cybersecurity of a business entity is utilized to derive the rate of attacks. A neural network model will generalize the type of attack based on network traffic features allowing dynamic state changes. Rules of engagement to generate self-organizing behavior will be leveraged to appoint a defense mechanism suitable for the attack-state of the model. The effectiveness of the model will be depicted by time-state chart that shows the number of affected assets for the different types of attacks triggered by the entity risk and the time it takes to revert into normal state. The model will also associate a relevant cost per incident occurrence that derives the need for enhancement of security solutions.

2021-03-29
Volkov, A. I., Semin, V. G., Khakimullin, E. R..  2020.  Modeling the Structures of Threats to Information Security Risks based on a Fuzzy Approach. 2020 International Conference Quality Management, Transport and Information Security, Information Technologies (IT QM IS). :132—135.

The article deals with the development and implementation of a method for synthesizing structures of threats and risks to information security based on a fuzzy approach. We consider a method for modeling threat structures based on structural abstractions: aggregation, generalization, and Association. It is shown that the considered forms of structural abstractions allow implementing the processes of Ascending and Descending inheritance. characteristics of the threats. A database of fuzzy rules based on procedural abstractions has been developed and implemented in the fuzzy logic tool environment Fussy Logic.

Maklachkova, V. V., Dokuchaev, V. A., Statev, V. Y..  2020.  Risks Identification in the Exploitation of a Geographically Distributed Cloud Infrastructure for Storing Personal Data. 2020 International Conference on Engineering Management of Communication and Technology (EMCTECH). :1—6.

Throughout the life cycle of any technical project, the enterprise needs to assess the risks associated with its development, commissioning, operation and decommissioning. This article defines the task of researching risks in relation to the operation of a data storage subsystem in the cloud infrastructure of a geographically distributed company and the tools that are required for this. Analysts point out that, compared to 2018, in 2019 there were 3.5 times more cases of confidential information leaks from storages on unprotected (freely accessible due to incorrect configuration) servers in cloud services. The total number of compromised personal data and payment information records increased 5.4 times compared to 2018 and amounted to more than 8.35 billion records. Moreover, the share of leaks of payment information has decreased, but the percentage of leaks of personal data has grown and accounts for almost 90% of all leaks from cloud storage. On average, each unsecured service identified resulted in 33.7 million personal data records being leaked. Leaks are mainly related to misconfiguration of services and stored resources, as well as human factors. These impacts can be minimized by improving the skills of cloud storage administrators and regularly auditing storage. Despite its seeming insecurity, the cloud is a reliable way of storing data. At the same time, leaks are still occurring. According to Kaspersky Lab, every tenth (11%) data leak from the cloud became possible due to the actions of the provider, while a third of all cyber incidents in the cloud (31% in Russia and 33% in the world) were due to gullibility company employees caught up in social engineering techniques. Minimizing the risks associated with the storage of personal data is one of the main tasks when operating a company's cloud infrastructure.

2021-03-01
Said, S., Bouloiz, H., Gallab, M..  2020.  Identification and Assessment of Risks Affecting Sociotechnical Systems Resilience. 2020 IEEE 6th International Conference on Optimization and Applications (ICOA). :1–10.
Resilience is regarded nowadays as the ideal solution that can be envisaged by sociotechnical systems for coping with potential threats and crises. This being said, gaining and maintaining this ability is not always easy, given the multitude of risks driving the adverse and challenging events. This paper aims to propose a method consecrated to the assessment of risks directly affecting resilience. This work is conducted within the framework of risk assessment and resilience engineering approaches. A 5×5 matrix, dedicated to the identification and assessment of risk factors that constitute threats to the system resilience, has been elaborated. This matrix consists of two axes, namely, the impact on resilience metrics and the availability and effectiveness of resilience planning. Checklists serving to collect information about these two attributes are established and a case study is undertaken. In this paper, a new method for identifying and assessing risk factors menacing directly the resilience of a given system is presented. The analysis of these risks must be given priority to make the system more resilient to shocks.
2021-02-16
Siu, J. Y., Panda, S. Kumar.  2020.  A Specification-Based Detection for Attacks in the Multi-Area System. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. :1526—1526.
In the past decade, cyber-attack events on the power grid have proven to be sophisticated and advanced. These attacks led to severe consequences on the grid operation, such as equipment damage or power outages. Hence, it is more critical than ever to develop tools for security assessment and detection of anomalies in the cyber-physical grid. For an extensive power grid, it is complex to analyze the causes of frequency deviations. Besides, if the system is compromised, attackers can leverage on the frequency deviation to bypass existing protection measures of the grid. This paper aims to develop a novel specification-based method to detect False Data Injection Attacks (FDIAs) in the multi-area system. Firstly, we describe the implementation of a three-area system model. Next, we assess the risk and devise several intrusion scenarios. Specifically, we inject false data into the frequency measurement and Automatic Generation Control (AGC) signals. We then develop a rule-based method to detect anomalies at the system-level. Our simulation results proves that the proposed algorithm can detect FDIAs in the system.
Mace, J. C., Czekster, R. Melo, Morisset, C., Maple, C..  2020.  Smart Building Risk Assessment Case Study: Challenges, Deficiencies and Recommendations. 2020 16th European Dependable Computing Conference (EDCC). :59—64.
Inter-networked control systems make smart buildings increasingly efficient but can lead to severe operational disruptions and infrastructure damage. It is vital the security state of smart buildings is properly assessed so that thorough and cost effective risk management can be established. This paper uniquely reports on an actual risk assessment performed in 2018 on one of the world's most densely monitored, state-of-the-art, smart buildings. From our observations, we suggest that current practice may be inadequate due to a number of challenges and deficiencies, including the lack of a recognised smart building risk assessment methodology. As a result, the security posture of many smart buildings may not be as robust as their risk assessments suggest. Crucially, we highlight a number of key recommendations for a more comprehensive risk assessment process for smart buildings. As a whole, we believe this practical experience report will be of interest to a range of smart building stakeholders.
Jin, Z., Yu, P., Guo, S. Y., Feng, L., Zhou, F., Tao, M., Li, W., Qiu, X., Shi, L..  2020.  Cyber-Physical Risk Driven Routing Planning with Deep Reinforcement-Learning in Smart Grid Communication Networks. 2020 International Wireless Communications and Mobile Computing (IWCMC). :1278—1283.
In modern grid systems which is a typical cyber-physical System (CPS), information space and physical space are closely related. Once the communication link is interrupted, it will make a great damage to the power system. If the service path is too concentrated, the risk will be greatly increased. In order to solve this problem, this paper constructs a route planning algorithm that combines node load pressure, link load balance and service delay risk. At present, the existing intelligent algorithms are easy to fall into the local optimal value, so we chooses the deep reinforcement learning algorithm (DRL). Firstly, we build a risk assessment model. The node risk assessment index is established by using the node load pressure, and then the link risk assessment index is established by using the average service communication delay and link balance degree. The route planning problem is then solved by a route planning algorithm based on DRL. Finally, experiments are carried out in a simulation scenario of a power grid system. The results show that our method can find a lower risk path than the original Dijkstra algorithm and the Constraint-Dijkstra algorithm.
Liu, F., Eugenio, E., Jin, I. H., Bowen, C..  2020.  Differentially Private Generation of Social Networks via Exponential Random Graph Models. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1695—1700.
Many social networks contain sensitive relational information. One approach to protect the sensitive relational information while offering flexibility for social network research and analysis is to release synthetic social networks at a pre-specified privacy risk level, given the original observed network. We propose the DP-ERGM procedure that synthesizes networks that satisfy the differential privacy (DP) via the exponential random graph model (EGRM). We apply DP-ERGM to a college student friendship network and compare its original network information preservation in the generated private networks with two other approaches: differentially private DyadWise Randomized Response (DWRR) and Sanitization of the Conditional probability of Edge given Attribute classes (SCEA). The results suggest that DP-EGRM preserves the original information significantly better than DWRR and SCEA in both network statistics and inferences from ERGMs and latent space models. In addition, DP-ERGM satisfies the node DP, a stronger notion of privacy than the edge DP that DWRR and SCEA satisfy.
2021-02-03
Bahaei, S. Sheikh.  2020.  A Framework for Risk Assessment in Augmented Reality-Equipped Socio-Technical Systems. 2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S). :77—78.

New technologies, such as augmented reality (AR) are used to enhance human capabilities and extend human functioning; nevertheless they may cause distraction and incorrect human functioning. Systems including socio entities (such as human) and technical entities (such as augmented reality) are called socio-technical systems. In order to do risk assessment in such systems, considering new dependability threats caused by augmented reality is essential, for example failure of an extended human function is a new type of dependability threat introduced to the system because of new technologies. In particular, it is required to identify these new dependability threats and extend modeling and analyzing techniques to be able to uncover their potential impacts. This research aims at providing a framework for risk assessment in AR-equipped socio-technical systems by identifying AR-extended human failures and AR-caused faults leading to human failures. Our work also extends modeling elements in an existing metamodel for modeling socio-technical systems, to enable AR-relevant dependability threats modeling. This extended metamodel is expected to be used for extending analysis techniques to analyze AR-equipped socio-technical systems.

He, S., Lei, D., Shuang, W., Liu, C., Gu, Z..  2020.  Network Security Analysis of Industrial Control System Based on Attack-Defense Tree. 2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS). :651—655.
In order to cope with the network attack of industrial control system, this paper proposes a quantifiable attack-defense tree model. In order to reduce the influence of subjective factors on weight calculation and the probability of attack events, the Fuzzy Analytic Hierarchy Process and the Attack-Defense Tree model are combined. First, the model provides a variety of security attributes for attack and defense leaf nodes. Secondly, combining the characteristics of leaf nodes, a fuzzy consistency matrix is constructed to calculate the security attribute weight of leaf nodes, and the probability of attack and defense leaf nodes. Then, the influence of defense node on attack behavior is analyzed. Finally, the network risk assessment of typical airport oil supply automatic control system has been undertaken as a case study using this attack-defense tree model. The result shows that this model can truly reflect the impact of defense measures on the attack behavior, and provide a reference for the network security scheme.
Ani, U. D., He, H., Tiwari, A..  2020.  Vulnerability-Based Impact Criticality Estimation for Industrial Control Systems. 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1—8.

Cyber threats directly affect the critical reliability and availability of modern Industry Control Systems (ICS) in respects of operations and processes. Where there are a variety of vulnerabilities and cyber threats, it is necessary to effectively evaluate cyber security risks, and control uncertainties of cyber environments, and quantitative evaluation can be helpful. To effectively and timely control the spread and impact produced by attacks on ICS networks, a probabilistic Multi-Attribute Vulnerability Criticality Analysis (MAVCA) model for impact estimation and prioritised remediation is presented. This offer a new approach for combining three major attributes: vulnerability severities influenced by environmental factors, the attack probabilities relative to the vulnerabilities, and functional dependencies attributed to vulnerability host components. A miniature ICS testbed evaluation illustrates the usability of the model for determining the weakest link and setting security priority in the ICS. This work can help create speedy and proactive security response. The metrics derived in this work can serve as sub-metrics inputs to a larger quantitative security metrics taxonomy; and can be integrated into the security risk assessment scheme of a larger distributed system.

2021-02-01
Ajenaghughrure, I. B., Sousa, S. C. da Costa, Lamas, D..  2020.  Risk and Trust in artificial intelligence technologies: A case study of Autonomous Vehicles. 2020 13th International Conference on Human System Interaction (HSI). :118–123.
This study investigates how risk influences users' trust before and after interactions with technologies such as autonomous vehicles (AVs'). Also, the psychophysiological correlates of users' trust from users” eletrodermal activity responses. Eighteen (18) carefully selected participants embark on a hypothetical trip playing an autonomous vehicle driving game. In order to stay safe, throughout the drive experience under four risk conditions (very high risk, high risk, low risk and no risk) that are based on automotive safety and integrity levels (ASIL D, C, B, A), participants exhibit either high or low trust by evaluating the AVs' to be highly or less trustworthy and consequently relying on the Artificial intelligence or the joystick to control the vehicle. The result of the experiment shows that there is significant increase in users' trust and user's delegation of controls to AVs' as risk decreases and vice-versa. In addition, there was a significant difference between user's initial trust before and after interacting with AVs' under varying risk conditions. Finally, there was a significant correlation in users' psychophysiological responses (electrodermal activity) when exhibiting higher and lower trust levels towards AVs'. The implications of these results and future research opportunities are discussed.
2021-01-25
Stan, O., Bitton, R., Ezrets, M., Dadon, M., Inokuchi, M., Yoshinobu, O., Tomohiko, Y., Elovici, Y., Shabtai, A..  2020.  Extending Attack Graphs to Represent Cyber-Attacks in Communication Protocols and Modern IT Networks. IEEE Transactions on Dependable and Secure Computing. :1–1.
An attack graph is a method used to enumerate the possible paths that an attacker can take in the organizational network. MulVAL is a known open-source framework used to automatically generate attack graphs. MulVAL's default modeling has two main shortcomings. First, it lacks the ability to represent network protocol vulnerabilities, and thus it cannot be used to model common network attacks, such as ARP poisoning. Second, it does not support advanced types of communication, such as wireless and bus communication, and thus it cannot be used to model cyber-attacks on networks that include IoT devices or industrial components. In this paper, we present an extended network security model for MulVAL that: (1) considers the physical network topology, (2) supports short-range communication protocols, (3) models vulnerabilities in the design of network protocols, and (4) models specific industrial communication architectures. Using the proposed extensions, we were able to model multiple attack techniques including: spoofing, man-in-the-middle, and denial of service attacks, as well as attacks on advanced types of communication. We demonstrate the proposed model in a testbed which implements a simplified network architecture comprised of both IT and industrial components
2020-12-01
Apau, M. N., Sedek, M., Ahmad, R..  2019.  A Theoretical Review: Risk Mitigation Through Trusted Human Framework for Insider Threats. 2019 International Conference on Cybersecurity (ICoCSec). :37—42.

This paper discusses the possible effort to mitigate insider threats risk and aim to inspire organizations to consider identifying insider threats as one of the risks in the company's enterprise risk management activities. The paper suggests Trusted Human Framework (THF) as the on-going and cyclic process to detect and deter potential employees who bound to become the fraudster or perpetrator violating the access and trust given. The mitigation's control statements were derived from the recommended practices in the “Common Sense Guide to Mitigating Insider Threats” produced by the Software Engineering Institute, Carnegie Mellon University (SEI-CMU). The statements validated via a survey which was responded by fifty respondents who work in Malaysia.

2020-11-20
EVINA, P. A., AYACHI, F. LABBENE, JAIDI, F., Bouhoula, A..  2019.  Enforcing a Risk Assessment Approach in Access Control Policies Management: Analysis, Correlation Study and Model Enhancement. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :1866—1871.
Nowadays, the domain of Information System (IS) security is closely related to that of Risk Management (RM). As an immediate consequence, talking about and tackling the security of IS imply the implementation of a set of mechanisms that aim to reduce or eliminate the risk of IS degradations. Also, the high cadence of IS evolution requires careful consideration of corresponding measures to prevent or mitigate security risks that may cause the degradation of these systems. From this perspective, an access control service is subjected to a number of rules established to ensure the integrity and confidentiality of the handled data. During their lifecycle, the use or manipulation of Access Control Policies (ACP) is accompanied with several defects that are made intentionally or not. For many years, these defects have been the subject of numerous studies either for their detection or for the analysis of the risks incurred by IS to their recurrence and complexity. In our research works, we focus on the analysis and risk assessment of noncompliance anomalies in concrete instances of access control policies. We complete our analysis by studying and assessing the risks associated with the correlation that may exist between different anomalies. Indeed, taking into account possible correlations can make a significant contribution to the reliability of IS. Identifying correlation links between anomalies in concrete instances of ACP contributes in discovering or detecting new scenarios of alterations and attacks. Therefore, once done, this study mainly contributes in the improvement of our risk assessment model.
2020-11-17
Wang, H., Li, J., Liu, D..  2018.  Research on Operating Data Analysis for Enterprise Intranet Information Security Risk Assessment. 2018 12th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID). :72—76.
Operating data analysis means to analyze the operating system logs, user operation logs, various types of alarms and security relevant configurations, etc. The purpose is to find whether there is an attack event, suspicious behaviors or improper configurations. It is an important part of risk assessment for enterprise intranet. However, due to the lack of information security knowledge or relevant experience, many people do not know how to properly implement it. In this article, we provided guidance on conducting operating data analysis and how to determine the security risk with the analysis results.
2020-11-16
Dwivedi, A..  2018.  Implementing Cyber Resilient Designs through Graph Analytics Assisted Model Based Systems Engineering. 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :607–616.
Model Based Systems Engineering (MBSE) adds efficiency during all phases of the design lifecycle. MBSE tools enforce design policies and rules to capture the design elements, inter-element relationships, and their attributes in a consistent manner. The system elements, and attributes are captured and stored in a centralized MBSE database for future retrieval. Systems that depend on computer networks can be designed using MBSE to meet cybersecurity and resilience requirements. At each step of a structured systems engineering methodology, decisions need to be made regarding the selection of architecture and designs that mitigate cyber risk and enhance cyber resilience. Detailed risk and decision analysis methods involve complex models and computations which are often characterized as a Big Data analytic problem. In this paper, we argue in favor of using graph analytic methods with model based systems engineering to support risk and decision analyses when engineering cyber resilient systems.
Feth, P., Adler, R., Schneider, D..  2018.  A Context-Aware, Confidence-Disclosing and Fail-Operational Dynamic Risk Assessment Architecture. 2018 14th European Dependable Computing Conference (EDCC). :190–194.
Future automotive systems will be highly automated and they will cooperate to optimize important system qualities and performance. Established safety assurance approaches and standards have been designed with manually controlled stand-alone systems in mind and are thus not fit to ensure safety of this next generation of systems. We argue that, given frequent dynamic changes and unknown contexts, systems need to be enabled to dynamically assess and manage their risks. In doing so, systems become resilient from a safety perspective, i.e. they are able to maintain a state of acceptable risk even when facing changes. This work presents a Dynamic Risk Assessment architecture that implements the concepts of context-awareness, confidence-disclosure and fail-operational. In particular, we demonstrate the utilization of these concepts for the calculation of automotive collision risk metrics, which are at the heart of our architecture.
2020-11-04
Torkura, K. A., Sukmana, M. I. H., Strauss, T., Graupner, H., Cheng, F., Meinel, C..  2018.  CSBAuditor: Proactive Security Risk Analysis for Cloud Storage Broker Systems. 2018 IEEE 17th International Symposium on Network Computing and Applications (NCA). :1—10.

Cloud Storage Brokers (CSB) provide seamless and concurrent access to multiple Cloud Storage Services (CSS) while abstracting cloud complexities from end-users. However, this multi-cloud strategy faces several security challenges including enlarged attack surfaces, malicious insider threats, security complexities due to integration of disparate components and API interoperability issues. Novel security approaches are imperative to tackle these security issues. Therefore, this paper proposes CS-BAuditor, a novel cloud security system that continuously audits CSB resources, to detect malicious activities and unauthorized changes e.g. bucket policy misconfigurations, and remediates these anomalies. The cloud state is maintained via a continuous snapshotting mechanism thereby ensuring fault tolerance. We adopt the principles of chaos engineering by integrating BrokerMonkey, a component that continuously injects failure into our reference CSB system, CloudRAID. Hence, CSBAuditor is continuously tested for efficiency i.e. its ability to detect the changes injected by BrokerMonkey. CSBAuditor employs security metrics for risk analysis by computing severity scores for detected vulnerabilities using the Common Configuration Scoring System, thereby overcoming the limitation of insufficient security metrics in existing cloud auditing schemes. CSBAuditor has been tested using various strategies including chaos engineering failure injection strategies. Our experimental evaluation validates the efficiency of our approach against the aforementioned security issues with a detection and recovery rate of over 96 %.

2020-10-12
MacMahon, Silvana Togneri, Alfano, Marco, Lenzitti, Biagio, Bosco, Giosuè Lo, McCaffery, Fergal, Taibi, Davide, Helfert, Markus.  2019.  Improving Communication in Risk Management of Health Information Technology Systems by means of Medical Text Simplification. 2019 IEEE Symposium on Computers and Communications (ISCC). :1135–1140.
Health Information Technology Systems (HITS) are increasingly used to improve the quality of patient care while reducing costs. These systems have been developed in response to the changing models of care to an ongoing relationship between patient and care team, supported by the use of technology due to the increased instance of chronic disease. However, the use of HITS may increase the risk to patient safety and security. While standards can be used to address and manage these risks, significant communication problems exist between experts working in different departments. These departments operate in silos often leading to communication breakdowns. For example, risk management stakeholders who are not clinicians may struggle to understand, define and manage risks associated with these systems when talking to medical professionals as they do not understand medical terminology or the associated care processes. In order to overcome this communication problem, we propose the use of the “Three Amigos” approach together with the use of the SIMPLE tool that has been developed to assist patients in understanding medical terms. This paper examines how the “Three Amigos” approach and the SIMPLE tool can be used to improve estimation of severity of risk by non-clinical risk management stakeholders and provides a practical example of their use in a ten step risk management process.
2020-10-05
Wu, Songyang, Zhang, Yong, Chen, Xiao.  2018.  Security Assessment of Dynamic Networks with an Approach of Integrating Semantic Reasoning and Attack Graphs. 2018 IEEE 4th International Conference on Computer and Communications (ICCC). :1166–1174.
Because of the high-value data of an enterprise, sophisticated cyber-attacks targeted at enterprise networks have become prominent. Attack graphs are useful tools that facilitate a scalable security analysis of enterprise networks. However, the administrators face difficulties in effectively modelling security problems and making right decisions when constructing attack graphs as their risk assessment experience is often limited. In this paper, we propose an innovative method of security assessment through an ontology- and graph-based approach. An ontology is designed to represent security knowledge such as assets, vulnerabilities, attacks, countermeasures, and relationships between them in a common vocabulary. An efficient algorithm is proposed to generate an attack graph based on the inference ability of the security ontology. The proposed algorithm is evaluated with different sizes and topologies of test networks; the results show that our proposed algorithm facilitates a scalable security analysis of enterprise networks.
Hong, Jin Bum, Yusuf, Simon Enoch, Kim, Dong Seong, Khan, Khaled MD.  2018.  Stateless Security Risk Assessment for Dynamic Networks. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :65–66.
Emerging networking technologies, such as cloud and Software Defined Networking, provide flexibility, elasticity and functionalities to change the network configurations over time. However, changes also impose unpredictable security postures at different times, creating difficulties to the security assessment of the network. To address this issue, we propose a stateless security risk assessment, which combines the security posture of network states at different times to provide an overall security overview. This paper describes the methodologies of the stateless security risk assessment. Our approach is applicable to any emerging networking technologies with dynamic changes.