Visible to the public Biblio

Found 12044 results

Filters: Keyword is Resiliency  [Clear All Filters]
2017-11-27
Fournaris, A. P., Papachristodoulou, L., Batina, L., Sklavos, N..  2016.  Residue Number System as a side channel and fault injection attack countermeasure in elliptic curve cryptography. 2016 International Conference on Design and Technology of Integrated Systems in Nanoscale Era (DTIS). :1–4.

Implementation attacks and more specifically Power Analysis (PA) (the dominant type of side channel attack) and fault injection (FA) attacks constitute a pragmatic hazard for scalar multiplication, the main operation behind Elliptic Curve Cryptography. There exists a wide variety of countermeasures attempting to thwart such attacks that, however, few of them explore the potential of alternative number systems like the Residue Number System (RNS). In this paper, we explore the potential of RNS as an PA-FA countermeasure and propose an PA-FA resistant scalar multiplication algorithm and provide an extensive security analysis against the most effective PA-FA techniques. We argue through a security analysis that combining traditional PA-FA countermeasures with lightweight RNS countermeasures can provide strong PA-FA resistance.

Qin, Y., Wang, H., Jia, Z., Xia, H..  2016.  A flexible and scalable implementation of elliptic curve cryptography over GF(p) based on ASIP. 2016 IEEE 35th International Performance Computing and Communications Conference (IPCCC). :1–8.

Public-key cryptography schemes are widely used due to their high level of security. As a very efficient one among public-key cryptosystems, elliptic curve cryptography (ECC) has been studied for years. Researchers used to improve the efficiency of ECC through point multiplication, which is the most important and complex operation of ECC. In our research, we use special families of curves and prime fields which have special properties. After that, we introduce the instruction set architecture (ISA) extension method to accelerate this algorithm (192-bit private key) and build an ECC\_ASIP model with six new ECC custom instructions. Finally, the ECC\_ASIP model is implemented in a field-programmable gate array (FPGA) platform. The persuasive experiments have been conducted to evaluate the performance of our new model in the aspects of the performance, the code storage space and hardware resources. Experimental results show that our processor improves 69.6% in the execution efficiency and requires only 6.2% more hardware resources.

2017-11-20
Immler, Vincent, Hennig, Maxim, Kürzinger, Ludwig, Sigl, Georg.  2016.  Practical Aspects of Quantization and Tamper-Sensitivity for Physically Obfuscated Keys. Proceedings of the Third Workshop on Cryptography and Security in Computing Systems. :13–18.

This work deals with key generation based on Physically Obfuscated Keys (POKs), i.e., a certain type of tamper-evident Physical Unclonable Function (PUF) that can be used as protection against invasive physical attacks. To design a protected device, one must take attacks such as probing of data lines or penetration of the physical security boundary into consideration. For the implementation of a POK as a countermeasure, physical properties of a material – which covers all parts to be protected – are measured. After measuring these properties, i.e. analog values, they have to be quantized in order to derive a cryptographic key. This paper will present and discuss the impact of the quantization method with regard to three parameters: key quality, tamper-sensitivity, and reliability. Our contribution is the analysis of two different quantization schemes considering these parameters. Foremost, we propose a new approach to achieve improved tamper-sensitivity in the worst-case with no information leakage. We then analyze a previous solution and compare it to our scenario. Based on empirical data we demonstrate the advantages of our approach. This significantly improves the level of protection of a tamper-resistant cryptographic device compared to cases not benefiting from our scheme.

Xu, Hui, Zhou, Yangfan, Lyu, Michael.  2016.  N-version Obfuscation. Proceedings of the 2Nd ACM International Workshop on Cyber-Physical System Security. :22–33.

Although existing for decades, software tampering attack is still a main threat to systems, such as Android, and cyber physical systems. Many approaches have been proposed to thwart specific procedures of tampering, e.g., obfuscation and self-checksumming. However, none of them can achieve theoretically tamper-proof without the protection of hardware circuit. Rather than proposing new tricks against tampering attacks, we focus on impeding the replication of software tampering via program diversification, and thus pose a scalability barrier against the attacks. Our idea, namely N-version obfuscation (NVO), is to automatically generate and deliver same featured, but functionally nonequivalent software copies to different machines or users. In this paper, we investigate such an idea on Android platform. We carefully design a candidate NVO solution for networked apps, which leverages a Message Authentication Code (MAC) mechanism to generate the functionally nonequivalent diversities. Our evaluation result shows that the time required for breaking such a software system increases linearly with respect to the number of software versions. In this way, attackers would suffer great scalability issues, considering that an app can have millions of users. With minimal NVO costs, effective tamper-resistant security can therefore be established.

Wallrabenstein, J. R..  2016.  Practical and Secure IoT Device Authentication Using Physical Unclonable Functions. 2016 IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud). :99–106.

Devices in the internet of things (IoT) are frequently (i) resource-constrained, and (ii) deployed in unmonitored, physically unsecured environments. Securing these devices requires tractable cryptographic protocols, as well as cost effective tamper resistance solutions. We propose and evaluate cryptographic protocols that leverage physical unclonable functions (PUFs): circuits whose input to output mapping depends on the unique characteristics of the physical hardware on which it is executed. PUF-based protocols have the benefit of minimizing private key exposure, as well as providing cost-effective tamper resistance. We present and experimentally evaluate an elliptic curve based variant of a theoretical PUF-based authentication protocol proposed previously in the literature. Our work improves over an existing proof-of-concept implementation, which relied on the discrete logarithm problem as proposed in the original work. In contrast, our construction uses elliptic curve cryptography, which substantially reduces the computational and storage burden on the device. We describe PUF-based algorithms for device enrollment, authentication, decryption, and digital signature generation. The performance of each construction is experimentally evaluated on a resource-constrained device to demonstrate tractability in the IoT domain. We demonstrate that our implementation achieves practical performance results, while also providing realistic security. Our work demonstrates that PUF-based protocols may be practically and securely deployed on low-cost resource-constrained IoT devices.

Liu, R., Wu, H., Pang, Y., Qian, H., Yu, S..  2016.  A highly reliable and tamper-resistant RRAM PUF: Design and experimental validation. 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :13–18.

This work presents a highly reliable and tamper-resistant design of Physical Unclonable Function (PUF) exploiting Resistive Random Access Memory (RRAM). The RRAM PUF properties such as uniqueness and reliability are experimentally measured on 1 kb HfO2 based RRAM arrays. Firstly, our experimental results show that selection of the split reference and offset of the split sense amplifier (S/A) significantly affect the uniqueness. More dummy cells are able to generate a more accurate split reference, and relaxing transistor's sizes of the split S/A can reduce the offset, thus achieving better uniqueness. The average inter-Hamming distance (HD) of 40 RRAM PUF instances is 42%. Secondly, we propose using the sum of the read-out currents of multiple RRAM cells for generating one response bit, which statistically minimizes the risk of early retention failure of a single cell. The measurement results show that with 8 cells per bit, 0% intra-HD can maintain more than 50 hours at 150 °C or equivalently 10 years at 69 °C by 1/kT extrapolation. Finally, we propose a layout obfuscation scheme where all the S/A are randomly embedded into the RRAM array to improve the RRAM PUF's resistance against invasive tampering. The RRAM cells are uniformly placed between M4 and M5 across the array. If the adversary attempts to invasively probe the output of the S/A, he has to remove the top-level interconnect and destroy the RRAM cells between the interconnect layers. Therefore, the RRAM PUF has the “self-destructive” feature. The hardware overhead of the proposed design strategies is benchmarked in 64 × 128 RRAM PUF array at 65 nm, while these proposed optimization strategies increase latency, energy and area over a naive implementation, they significantly improve the performance and security.

Koch, R., Kühn, T., Odenwald, M., Rodosek, G. Dreo.  2016.  Dr. WATTson: Lightweight current-based Intrusion Detection (CBID). 2016 14th Annual Conference on Privacy, Security and Trust (PST). :170–177.

Intrusion detection has been an active field of research for more than 35 years. Numerous systems had been built based on the two fundamental detection principles, knowledge-based and behavior-based detection. Anyway, having a look at day-to-day news about data breaches and successful attacks, detection effectiveness is still limited. Even more, heavy-weight intrusion detection systems cannot be installed in every endangered environment. For example, Industrial Control Systems are typically utilized for decades, charging off huge investments of companies. Thus, some of these systems have been in operation for years, but were designed afore without security in mind. Even worse, as systems often have connections to other networks and even the Internet nowadays, an adequate protection is mandatory, but integrating intrusion detection can be extremely difficult - or even impossible to date. We propose a new lightweight current-based IDS which is using a difficult to manipulate measurement base and verifiable ground truth. Focus of our system is providing intrusion detection for ICS and SCADA on a low-priced base, easy to integrate. Dr. WATTson, a prototype implemented based on our concept provides high detection and low false alarm rates.

Nozaki, Y., Ikezaki, Y., Yoshikawa, M..  2016.  Tamper resistance of IoT devices against electromagnnetic analysis. 2016 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK). :1–2.

Lightweight block ciphers, which are required for IoT devices, have attracted attention. Simeck, which is one of the most popular lightweight block ciphers, can be implemented on IoT devices in the smallest area. Regarding the hardware security, the threat of electromagnetic analysis has been reported. However, electromagnetic analysis of Simeck has not been reported. Therefore, this study proposes a dedicated electromagnetic analysis for a lightweight block cipher Simeck to ensure the safety of IoT devices in the future. To our knowledge, this is the first electromagnetic analysis for Simeck. Experiments using a FPGA prove the validity of the proposed method.

Yoshikawa, M., Nozaki, Y..  2016.  Tamper resistance evaluation of PUF in environmental variations. 2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS). :119–121.

The damage caused by counterfeits of semiconductors has become a serious problem. Recently, a physical unclonable function (PUF) has attracted attention as a technique to prevent counterfeiting. The present study investigates an arbiter PUF, which is a typical PUF. The vulnerability of a PUF against machine-learning attacks has been revealed. It has also been indicated that the output of a PUF is inverted from its normal output owing to the difference in environmental variations, such as the changes in power supply voltage and temperature. The resistance of a PUF against machine-learning attacks due to the difference in environmental variation has seldom been evaluated. The present study evaluated the resistance of an arbiter PUF against machine-learning attacks due to the difference in environmental variation. By performing an evaluation experiment using a simulation, the present study revealed that the resistance of an arbiter PUF against machine-learning attacks due to environmental variation was slightly improved. However, the present study also successfully predicted more than 95% of the outputs by increasing the number of learning cycles. Therefore, an arbiter PUF was revealed to be vulnerable to machine-learning attacks even after environmental variation.

Thongthua, A., Ngamsuriyaroj, S..  2016.  Assessment of Hypervisor Vulnerabilities. 2016 International Conference on Cloud Computing Research and Innovations (ICCCRI). :71–77.

Hypervisors are the main components for managing virtual machines on cloud computing systems. Thus, the security of hypervisors is very crucial as the whole system could be compromised when just one vulnerability is exploited. In this paper, we assess the vulnerabilities of widely used hypervisors including VMware ESXi, Citrix XenServer and KVM using the NIST 800-115 security testing framework. We perform real experiments to assess the vulnerabilities of those hypervisors using security testing tools. The results are evaluated using weakness information from CWE, and using vulnerability information from CVE. We also compute the severity scores using CVSS information. All vulnerabilities found of three hypervisors will be compared in terms of weaknesses, severity scores and impact. The experimental results showed that ESXi and XenServer have common weaknesses and vulnerabilities whereas KVM has fewer vulnerabilities. In addition, we discover a new vulnerability called HTTP response splitting on ESXi Web interface.

Halevi, Tzipora, Memon, Nasir, Lewis, James, Kumaraguru, Ponnurangam, Arora, Sumit, Dagar, Nikita, Aloul, Fadi, Chen, Jay.  2016.  Cultural and Psychological Factors in Cyber-security. Proceedings of the 18th International Conference on Information Integration and Web-based Applications and Services. :318–324.

Increasing cyber-security presents an ongoing challenge to security professionals. Research continuously suggests that online users are a weak link in information security. This research explores the relationship between cyber-security and cultural, personality and demographic variables. This study was conducted in four different countries and presents a multi-cultural view of cyber-security. In particular, it looks at how behavior, self-efficacy and privacy attitude are affected by culture compared to other psychological and demographics variables (such as gender and computer expertise). It also examines what kind of data people tend to share online and how culture affects these choices. This work supports the idea of developing personality based UI design to increase users' cyber-security. Its results show that certain personality traits affect the user cyber-security related behavior across different cultures, which further reinforces their contribution compared to cultural effects.

Hoole, Alexander M., Traore, Issa, Delaitre, Aurelien, de Oliveira, Charles.  2016.  Improving Vulnerability Detection Measurement: [Test Suites and Software Security Assurance]. Proceedings of the 20th International Conference on Evaluation and Assessment in Software Engineering. :27:1–27:10.

The Software Assurance Metrics and Tool Evaluation (SAMATE) project at the National Institute of Standards and Technology (NIST) has created the Software Assurance Reference Dataset (SARD) to provide researchers and software security assurance tool developers with a set of known security flaws. As part of an empirical evaluation of a runtime monitoring framework, two test suites were executed and monitored, revealing deficiencies which led to a collaboration with the NIST SAMATE team to provide replacements. Test Suites 45 and 46 are analyzed, discussed, and updated to improve accuracy, consistency, preciseness, and automation. Empirical results show metrics such as recall, precision, and F-Measure are all impacted by invalid base assumptions regarding the test suites.

Reddy, Alavalapati Goutham, Yoon, Eun-Jun, Das, Ashok Kumar, Yoo, Kee-Young.  2016.  An Enhanced Anonymous Two-factor Mutual Authentication with Key-agreement Scheme for Session Initiation Protocol. Proceedings of the 9th International Conference on Security of Information and Networks. :145–149.

A two-factor authenticated key-agreement scheme for session initiation protocol emerged as a best remedy to overcome the ascribed limitations of the password-based authentication scheme. Recently, Lu et al. proposed an anonymous two-factor authenticated key-agreement scheme for SIP using elliptic curve cryptography. They claimed that their scheme is secure against attacks and achieves user anonymity. Conversely, this paper's keen analysis points out several severe security weaknesses of the Lu et al.'s scheme. In addition, this paper puts forward an enhanced anonymous two-factor mutual authenticated key-agreement scheme for session initiation protocol using elliptic curve cryptography. The security analysis and performance analysis sections demonstrates that the proposed scheme is more robust and efficient than Lu et al.'s scheme.

Karati, Arijit, Biswas, G. P..  2016.  Cryptanalysis and Improvement of a Certificateless Short Signature Scheme Using Bilinear Pairing. Proceedings of the International Conference on Advances in Information Communication Technology & Computing. :19:1–19:6.

Recently, various certificate-less signature (CLS) schemes have been developed using bilinear pairing to provide authenticity of message. In 2015, Jia-Lun Tsai proposed a certificate-less pairing based short signature scheme using elliptic curve cryptography (ECC) and prove its security under random oracle. However, it is shown that the scheme is inappropriate for its practical use as there is no message-signature dependency present during signature generation and verification. Thus, the scheme is vulnerable. To overcome these attacks, this paper aims to present a variant of Jia-Lun Tsai's short signature scheme. Our scheme is secured under the hardness of collusion attack algorithm with k traitors (k–-CAA). The performance analysis demonstrates that proposed scheme is efficient than other related signature schemes.

Regainia, L., Salva, S., Ecuhcurs, C..  2016.  A classification methodology for security patterns to help fix software weaknesses. 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA). :1–8.

Security patterns are generic solutions that can be applied since early stages of software life to overcome recurrent security weaknesses. Their generic nature and growing number make their choice difficult, even for experts in system design. To help them on the pattern choice, this paper proposes a semi-automatic methodology of classification and the classification itself, which exposes relationships among software weaknesses, security principles and security patterns. It expresses which patterns remove a given weakness with respect to the security principles that have to be addressed to fix the weakness. The methodology is based on seven steps, which anatomize patterns and weaknesses into set of more precise sub-properties that are associated through a hierarchical organization of security principles. These steps provide the detailed justifications of the resulting classification and allow its upgrade. Without loss of generality, this classification has been established for Web applications and covers 185 software weaknesses, 26 security patterns and 66 security principles. Research supported by the industrial chair on Digital Confidence (http://confiance-numerique.clermont-universite.fr/index-en.html).

Cordero, C. García, Hauke, S., Mühlhäuser, M., Fischer, M..  2016.  Analyzing flow-based anomaly intrusion detection using Replicator Neural Networks. 2016 14th Annual Conference on Privacy, Security and Trust (PST). :317–324.

Defending key network infrastructure, such as Internet backbone links or the communication channels of critical infrastructure, is paramount, yet challenging. The inherently complex nature and quantity of network data impedes detecting attacks in real world settings. In this paper, we utilize features of network flows, characterized by their entropy, together with an extended version of the original Replicator Neural Network (RNN) and deep learning techniques to learn models of normality. This combination allows us to apply anomaly-based intrusion detection on arbitrarily large amounts of data and, consequently, large networks. Our approach is unsupervised and requires no labeled data. It also accurately detects network-wide anomalies without presuming that the training data is completely free of attacks. The evaluation of our intrusion detection method, on top of real network data, indicates that it can accurately detect resource exhaustion attacks and network profiling techniques of varying intensities. The developed method is efficient because a normality model can be learned by training an RNN within a few seconds only.

Paramathma, M. K., Devaraj, D., Reddy, B. S..  2016.  Artificial neural network based static security assessment module using PMU measurements for smart grid application. 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS). :1–5.

Power system security is one of the key issues in the operation of smart grid system. Evaluation of power system security is a big challenge considering all the contingencies, due to huge computational efforts involved. Phasor measurement unit plays a vital role in real time power system monitoring and control. This paper presents static security assessment scheme for large scale inter connected power system with Phasor measurement unit using Artificial Neural Network. Voltage magnitude and phase angle are used as input variables of the ANN. The optimal location of PMU under base case and critical contingency cases are determined using Genetic algorithm. The performance of the proposed optimization model was tested with standard IEEE 30 bus system incorporating zero injection buses and successful results have been obtained.

Anderson, Hyrum S., Woodbridge, Jonathan, Filar, Bobby.  2016.  DeepDGA: Adversarially-Tuned Domain Generation and Detection. Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security. :13–21.

Many malware families utilize domain generation algorithms (DGAs) to establish command and control (C&C) connections. While there are many methods to pseudorandomly generate domains, we focus in this paper on detecting (and generating) domains on a per-domain basis which provides a simple and flexible means to detect known DGA families. Recent machine learning approaches to DGA detection have been successful on fairly simplistic DGAs, many of which produce names of fixed length. However, models trained on limited datasets are somewhat blind to new DGA variants. In this paper, we leverage the concept of generative adversarial networks to construct a deep learning based DGA that is designed to intentionally bypass a deep learning based detector. In a series of adversarial rounds, the generator learns to generate domain names that are increasingly more difficult to detect. In turn, a detector model updates its parameters to compensate for the adversarially generated domains. We test the hypothesis of whether adversarially generated domains may be used to augment training sets in order to harden other machine learning models against yet-to-be-observed DGAs. We detail solutions to several challenges in training this character-based generative adversarial network. In particular, our deep learning architecture begins as a domain name auto-encoder (encoder + decoder) trained on domains in the Alexa one million. Then the encoder and decoder are reassembled competitively in a generative adversarial network (detector + generator), with novel neural architectures and training strategies to improve convergence.

You, L., Li, Y., Wang, Y., Zhang, J., Yang, Y..  2016.  A deep learning-based RNNs model for automatic security audit of short messages. 2016 16th International Symposium on Communications and Information Technologies (ISCIT). :225–229.

The traditional text classification methods usually follow this process: first, a sentence can be considered as a bag of words (BOW), then transformed into sentence feature vector which can be classified by some methods, such as maximum entropy (ME), Naive Bayes (NB), support vector machines (SVM), and so on. However, when these methods are applied to text classification, we usually can not obtain an ideal result. The most important reason is that the semantic relations between words is very important for text categorization, however, the traditional method can not capture it. Sentiment classification, as a special case of text classification, is binary classification (positive or negative). Inspired by the sentiment analysis, we use a novel deep learning-based recurrent neural networks (RNNs)model for automatic security audit of short messages from prisons, which can classify short messages(secure and non-insecure). In this paper, the feature of short messages is extracted by word2vec which captures word order information, and each sentence is mapped to a feature vector. In particular, words with similar meaning are mapped to a similar position in the vector space, and then classified by RNNs. RNNs are now widely used and the network structure of RNNs determines that it can easily process the sequence data. We preprocess short messages, extract typical features from existing security and non-security short messages via word2vec, and classify short messages through RNNs which accept a fixed-sized vector as input and produce a fixed-sized vector as output. The experimental results show that the RNNs model achieves an average 92.7% accuracy which is higher than SVM.

Kaur, R., Singh, A., Singh, S., Sharma, S..  2016.  Security of software defined networks: Taxonomic modeling, key components and open research area. 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). :2832–2839.

Software defined networking promises network operators to dramatically simplify network management. It provides flexibility and innovation through network programmability. With SDN, network management moves from codifying functionality in terms of low-level device configuration to building software that facilitates network management and debugging[1]. SDN provides new techniques to solve long-standing problems in networking like routing by separating the complexity of state distribution from network specification. Despite all the hype surrounding SDNs, exploiting its full potential is demanding. Security is still the major issue and a striking challenge that reduces the growth of SDNs. Moreover the introduction of various architectural components and up cycling of novel entities of SDN poses new security issues and threats. SDN is considered as major target for digital threats and cyber-attacks[2] and have more devastating effects than simple networks. Initial SDN design doesn't considered security as its part; therefore, it must be raised on the agenda. This article discusses the security solutions proposed to secure SDNs. We categorize the security solutions in the article by presenting a thematic taxonomy based on SDN architectural layers/interfaces[3], security measures and goals, simulation framework. Moreover, the literature also points out the possible attacks[2] targeting different layers/interfaces of SDNs. For securing SDNs, the potential requirements and their key enablers are also identified and presented. Also, the articles sketch the design of secure and dependable SDNs. At last, we discuss open issues and challenges of SDN security that may be rated appropriate to be handled by professionals and researchers in the future.

Yang, Chaofei, Wu, Chunpeng, Li, Hai, Chen, Yiran, Barnell, Mark, Wu, Qing.  2016.  Security challenges in smart surveillance systems and the solutions based on emerging nano-devices. 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1–6.

Modern smart surveillance systems can not only record the monitored environment but also identify the targeted objects and detect anomaly activities. These advanced functions are often facilitated by deep neural networks, achieving very high accuracy and large data processing throughput. However, inappropriate design of the neural network may expose such smart systems to the risks of leaking the target being searched or even the adopted learning model itself to attackers. In this talk, we will present the security challenges in the design of smart surveillance systems. We will also discuss some possible solutions that leverage the unique properties of emerging nano-devices, including the incurred design and performance cost and optimization methods for minimizing these overheads.

Chakraborty, K., Saha, G..  2016.  Off-line voltage security assessment of power transmission systems using UVSI through artificial neural network. 2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI). :158–162.

Coming days are becoming a much challenging task for the power system researchers due to the anomalous increase in the load demand with the existing system. As a result there exists a discordant between the transmission and generation framework which is severely pressurizing the power utilities. In this paper a quick and efficient methodology has been proposed to identify the most sensitive or susceptible regions in any power system network. The technique used in this paper comprises of correlation of a multi-bus power system network to an equivalent two-bus network along with the application of Artificial neural network(ANN) Architecture with training algorithm for online monitoring of voltage security of the system under all multiple exigencies which makes it more flexible. A fast voltage stability indicator has been proposed known as Unified Voltage Stability Indicator (UVSI) which is used as a substratal apparatus for the assessment of the voltage collapse point in a IEEE 30-bus power system in combination with the Feed Forward Neural Network (FFNN) to establish the accuracy of the status of the system for different contingency configurations.

Wei, Li, Hongyu, Liu, Xiaoliang, Zhang.  2016.  A network data security analysis method based on DPI technology. 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS). :973–976.

In view of the high demand for the security of visiting data in power system, a network data security analysis method based on DPI technology was put forward in this paper, to solve the problem of security gateway judge the legality of the network data. Considering the legitimacy of the data involves data protocol and data contents, this article will filters the data from protocol matching and content detection. Using deep packet inspection (DPI) technology to screen the protocol. Using protocol analysis to detect the contents of data. This paper implements the function that allowing secure data through the gateway and blocking threat data. The example proves that the method is more effective guarantee the safety of visiting data.

Deng, C., Qiao, H..  2016.  Network security intrusion detection system based on incremental improved convolutional neural network model. 2016 International Conference on Communication and Electronics Systems (ICCES). :1–5.

With the popularization and development of network knowledge, network intruders are increasing, and the attack mode has been updated. Intrusion detection technology is a kind of active defense technology, which can extract the key information from the network system, and quickly judge and protect the internal or external network intrusion. Intrusion detection is a kind of active security technology, which provides real-time protection for internal attacks, external attacks and misuse, and it plays an important role in ensuring network security. However, with the diversification of intrusion technology, the traditional intrusion detection system cannot meet the requirements of the current network security. Therefore, the implementation of intrusion detection needs diversifying. In this context, we apply neural network technology to the network intrusion detection system to solve the problem. In this paper, on the basis of intrusion detection method, we analyze the development history and the present situation of intrusion detection technology, and summarize the intrusion detection system overview and architecture. The neural network intrusion detection is divided into data acquisition, data analysis, pretreatment, intrusion behavior detection and testing.

Li, Guyue, Hu, Aiqun.  2016.  Virtual MIMO-based cooperative beamforming and jamming scheme for the clustered wireless sensor network security. 2016 2nd IEEE International Conference on Computer and Communications (ICCC). :2246–2250.

This paper considers the physical layer security for the cluster-based cooperative wireless sensor networks (WSNs), where each node is equipped with a single antenna and sensor nodes cooperate at each cluster of the network to form a virtual multi-input multi-output (MIMO) communication architecture. We propose a joint cooperative beamforming and jamming scheme to enhance the security of the WSNs where a part of sensor nodes in Alice's cluster are deployed to transmit beamforming signals to Bob while a part of sensor nodes in Bob's cluster are utilized to jam Eve with artificial noise. The optimization of beamforming and jamming vectors to minimize total energy consumption satisfying the quality-of-service (QoS) constraints is a NP-hard problem. Fortunately, through reformulation, the problem is proved to be a quadratically constrained quadratic problem (QCQP) which can be solved by solving constraint integer programs (SCIP) algorithm. Finally, we give the simulation results of our proposed scheme.