Biblio
Secure multi-party computation(SMPC) is an important research field in cryptography, secure multi-party computation has a wide range of applications in practice. Accordingly, information security issues have arisen. Aiming at security issues in Secure multi-party computation, we consider that semi-honest participants have malicious operations such as collusion in the process of information interaction, gaining an information advantage over honest parties through collusion which leads to deviations in the security of the protocol. To solve this problem, we combine information entropy to propose an n-round information exchange protocol, in which each participant broadcasts a relevant information value in each round without revealing additional information. Through the change of the uncertainty of the correct result value in each round of interactive information, each participant cannot determine the correct result value before the end of the protocol. Security analysis shows that our protocol guarantees the security of the output obtained by the participants after the completion of the protocol.
The algorithm of causal anomaly detection in industrial control physics is proposed to determine the normal cloud line of industrial control system so as to accurately detect the anomaly. In this paper, The causal modeling algorithm combining Maximum Information Coefficient and Transfer Entropy was used to construct the causal network among nodes in the system. Then, the abnormal nodes and the propagation path of the anomaly are deduced from the structural changes of the causal network before and after the attack. Finally, an anomaly detection algorithm based on hybrid differential cumulative is used to identify the specific anomaly data in the anomaly node. The stability of causality mining algorithm and the validity of locating causality anomalies are verified by using the data of classical chemical process. Experimental results show that the anomaly detection algorithm is better than the comparison algorithm in accuracy, false negative rate and recall rate, and the anomaly location strategy makes the anomaly source traceable.
In order to improve the accuracy of similarity, an improved collaborative filtering algorithm based on trust and information entropy is proposed in this paper. Firstly, the direct trust between the users is determined by the user's rating to explore the potential trust relationship of the users. The time decay function is introduced to realize the dynamic portrayal of the user's interest decays over time. Secondly, the direct trust and the indirect trust are combined to obtain the overall trust which is weighted with the Pearson similarity to obtain the trust similarity. Then, the information entropy theory is introduced to calculate the similarity based on weighted information entropy. At last, the trust similarity and the similarity based on weighted information entropy are weighted to obtain the similarity combing trust and information entropy which is used to predicted the rating of the target user and create the recommendation. The simulation shows that the improved algorithm has a higher accuracy of recommendation and can provide more accurate and reliable recommendation service.
Data have become an important asset for analysis and behavioral prediction, especially correlations between data. Privacy protection has aroused academic and social concern given the amount of personal sensitive information involved in data. However, existing works assume that the records are independent of each other, which is unsuitable for associated data. Many studies either fail to achieve privacy protection or lead to excessive loss of information while applying data correlations. Differential privacy, which achieves privacy protection by injecting random noise into the statistical results given the correlation, will improve the background knowledge of adversaries. Therefore, this paper proposes an information entropy differential privacy solution for correlation data privacy issues based on rough set theory. Under the solution, we use rough set theory to measure the degree of association between attributes and use information entropy to quantify the sensitivity of the attribute. The information entropy difference privacy is achieved by clustering based on the correlation and adding personalized noise to each cluster while preserving the correlations between data. Experiments show that our algorithm can effectively preserve the correlation between the attributes while protecting privacy.
Currently, security protection in Industrial Control Systems has become a hot topic, and a great number of defense techniques have sprung up. As one of the most effective approaches, area isolation has the exceptional advantages and is widely used to prevent attacks or hazards propagating. However, most existing methods for inter-area communication protection present some limitations, i.e., excessively depending on the analyzing rules, affecting original communication. Additionally, the network architecture and data flow direction can hardly be adjusted after being deployed. To address these problems, a dynamical and customized communication protection technology is proposed in this paper. In detail, a security inter-area communication architecture based on Software Defined Network is designed firstly, where devices or subsystems can be dynamically added into or removed from the communication link. And then, a security inspection method based on information entropy is presented for deep network behaviors analysis. According to the security analysis results, the communications in the network can be adjusted in time. Finally, simulations are constructed, and the results indicate that the proposed approach is sensitive and effective for cyber-attacks detection.
In data analysis, it is always a tough task to strike the balance between the privacy and the applicability of the data. Due to the demand for individual privacy, the data are being more or less obscured before being released or outsourced to avoid possible privacy leakage. This process is so called de-identification. To discuss a de-identification policy, the most important two aspects should be the re-identification risk and the information loss. In this paper, we introduce a novel policy searching method to efficiently find out proper de-identification policies according to acceptable re-identification risk while retaining the information resided in the data. With the UCI Machine Learning Repository as our real world dataset, the re-identification risk can therefore be able to reflect the true risk of the de-identified data under the de-identification policies. Moreover, using the proposed algorithm, one can then efficiently acquire policies with higher information entropy.
This paper proposes a service operator-aware trust scheme (SOTS) for resource matchmaking across multiple clouds. Through analyzing the built-in relationship between the users, the broker, and the service resources, this paper proposes a middleware framework of trust management that can effectively reduces user burden and improve system dependability. Based on multidimensional resource service operators, we model the problem of trust evaluation as a process of multi-attribute decision-making, and develop an adaptive trust evaluation approach based on information entropy theory. This adaptive approach can overcome the limitations of traditional trust schemes, whereby the trusted operators are weighted manually or subjectively. As a result, using SOTS, the broker can efficiently and accurately prepare the most trusted resources in advance, and thus provide more dependable resources to users. Our experiments yield interesting and meaningful observations that can facilitate the effective utilization of SOTS in a large-scale multi-cloud environment.
This paper investigates the vulnerability of power grids based on the complex networks combining the information entropy. The difference of current directions for a link is considered, and it is characterized by the information entropy. By combining the information entropy, the electrical betweenness is improved to evaluate the vulnerability of power grids. Attacking the link based on the largest electrical betweenness with the information can get the larger size of the largest cluster and the lower lost of loads, compared with the electrical betweenness without the information entropy. Finally, IEEE 118 bus system is tested to validate the effectiveness of the novel index to characterize the the vulnerability of power grids.