Biblio
This paper describes a novel distributed mobility management (DMM) scheme for the "named-object" information centric network (ICN) architecture in which the routers forward data based on unique identifiers which are dynamically mapped to the current network addresses of a device. The work proposes and evaluates two specific handover schemes namely, hard handoff with rebinding and soft handoff with multihoming intended to provide seamless data transfer with improved throughput during handovers. The evaluation of the proposed handover schemes using system simulation along with proof-of-concept implementation in ORBIT testbed is described. The proposed handoff and scheduling throughput gains are 12.5% and 44% respectively over multiple interfaces when compared to traditional IP network with equal share split scheme. The handover performance with respect to RTT and throughput demonstrate the benefits of clean slate network architecture for beyond 5G networks.
Vehicular Ad-hoc Network (VANET) can provide vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communications for efficient and safe transportation. The vehicles features high mobility, thus undergoing frequent handovers when they are moving, which introduces the significant overload on the network entities. To address the problem, the distributed mobility management (DMM) protocol for next generation mobile network has been proposed, which can be well combined with VANETs. Although the existing DMM solutions can guarantee the smooth handovers of vehicles, the security has not been fully considered in the mobility management. Moreover, the most of existing schemes cannot support group communication scenario. In this paper, we propose an efficient and secure group mobility management scheme based on the blockchain. Specifically, to reduce the handover latency and signaling cost during authentication, aggregate message authentication code (AMAC) and one-time password (OTP) are adopted. The security analysis and the performance evaluation results show that the proposed scheme can not only enhance the security functionalities but also support fast handover authentication.
Ultra-dense Networks are attracting significant interest due to their ability to provide the next generation 5G cellular networks with a high data rate, low delay, and seamless coverage. Several factors, such as interferences, energy constraints, and backhaul bottlenecks may limit wireless networks densification. In this paper, we study the effect of mobile node densification, access node densification, and their aggregation into virtual entities, referred to as virtual cells, on location privacy. Simulations show that the number of tracked mobile nodes might be statistically reduced up to 10 percent by implementing virtual cells. Moreover, experiments highlight that success of tracking attacks has an inverse relationship to the number of moving nodes. The present paper is a preliminary attempt to analyse the effectiveness of cell virtualization to mitigate location privacy threats in ultra-dense networks.
NEtwork MObility (NEMO) has gained recently a lot of attention from a number of standardization and researches committees. Although NEMO-Basic Support Protocol (NEMO-BSP) seems to be suitable in the context of the Intelligent Transport Systems (ITS), it has several shortcomings, such as packets loss and lack of security, since it is a host-based mobility scheme. Therefore, in order to improve handoff performance and solve these limitations, schemes adapting Proxy MIPv6 for NEMO have been appeared. But the majorities did not deal with the case of the handover of the Visiting Mobile Nodes (VMN) located below the Mobile Router (MR). Thus, this paper proposes a Visiting Mobile Node Authentication Protocol for Proxy MIPv6-Based NEtwork MObility which ensures strong authentication between entities. To evaluate the security performance of our proposition, we have used the AVISPA/SPAN software which guarantees that our proposed protocol is a safe scheme.
The Internet Protocol version 6 (IPv6) over Low Power Wireless Personal Area Networks (6LoWPAN), which is a promising technology to promote the development of the Internet of Things (IoT), has been proposed to connect millions of IP-based sensing devices over the open Internet. To support the mobility of these resource constrained sensing nodes, the Proxy Mobile IPv6 (PMIPv6) has been proposed as the standard. Although the standard has specified some issues of security and mobility in 6LoWPANs, the issues of supporting secure group handovers have not been addressed much by the current existing solutions. In this paper, to reduce the handover latency and signaling cost, an efficient and secure group mobility scheme is designed to support seamless handovers for a group of resource constrained 6LoWPAN devices. With the consideration of the devices holding limited energy capacities, only simple hash and symmetric encryption method is used. The security analysis and the performance evaluation results show that the proposed 6LoWPAN group handover scheme could not only enhance the security functionalities but also support fast authentication for handovers.
This paper proposes a taxonomy of autonomous vehicle handover situations with a particular emphasis on situational awareness. It focuses on a number of research challenges such as: legal responsibility, the situational awareness level of the driver and the vehicle, the knowledge the vehicle must have of the driver's driving skills as well as the in-vehicle context. The taxonomy acts as a starting point for researchers and practitioners to frame the discussion on this complex problem.
We propose Authentication and Key Agreement (AKA) for Machine Type Communications (MTC) in LTE-Advanced. This protocol is based on an idea of grouping devices so that it would reduce signaling congestion in the access network and overload on the single authentication server. We verified that this protocol is designed to be secure against many attacks by using a software verification tool. Furthermore, performance evaluation suggests that this protocol is efficient with respect to authentication overhead and handover delay.
The emergence of new technologies, in addition with the popularization of mobile devices and wireless communication systems, demands a variety of requirements that current Internet is not able to comply adequately. In this scenario, the innovative information-centric Entity Title Architecture (ETArch), a Future Internet (FI) clean slate approach, was design to efficiently cope with the increasing demand of beyond-IP networking services. Nevertheless, despite all ETArch capabilities, it was not projected with reliable networking functions, which limits its operability in mobile multimedia networking, and will seriously restrict its scope in Future Internet scenarios. Therefore, our work extends ETArch mobility control with advanced quality-oriented mobility functions, to deploy mobility prediction, Point of Attachment (PoA) decision and handover setup meeting both session quality requirements of active session flows and current wireless quality conditions of neighbouring PoA candidates. The effectiveness of the proposed additions were confirmed through a preliminary evaluation carried out by MATLAB, in which we have considered distinct applications scenario, and showed that they were able to outperform the most relevant alternative solutions in terms of performance and quality of service.
In PMIPv6-based network, mobile nodes can be made smaller and lighter because the network nodes perform the mobility management-related functions on behalf of the mobile nodes. One of the protocols, Fast Handovers for Proxy Mobile IPv6 (FPMIPv6) [1] was studied by the Internet Engineering Task Force (IETF). Since FPMIPv6 adopts the entities and the concepts of Fast Handovers for Mobile IPv6 (FMIPv6) in Proxy Mobile IPv6 (PMIPv6), it reduces the packet loss. The conventional scheme has been proposed to cooperate with an Authentication, Authorization and Accounting (AAA) infrastructure for authentication of a mobile node in PMIPv6. Despite the fact that this approach resulted in the best efficiency, without beginning secured signaling messages, The PMIPv6 is vulnerable to various security threats and it does not support global mobility. In this paper, the authors analyzed the Kang-Park & ESS-FH scheme, and proposed an Enhanced Security scheme for FPMIPv6 (ESS-FP). Based on the CGA method and the public key Cryptography, ESS-FP provides a strong key exchange and key independence in addition to improving the weaknesses of FPMIPv6 and its handover latency was analyzed and compared with that of the Kang-Park scheme & ESS-FH.
In the last decade, the request for Internet access in heterogeneous environments keeps on growing, principally in mobile platforms such as buses, airplanes and trains. Consequently, several extensions and schemes have been introduced to achieve seamless handoff of mobile networks from one subnet to another. Even with these enhancements, the problem of maintaining the security concerns and availability has not been resolved yet, especially, the absence of authentication mechanism between network entities in order to avoid vulnerability from attacks. To eliminate the threats on the interface between the mobile access gateway (MAG) and the mobile router (MR) in improving fast PMIPv6-based network mobility (IFP-NEMO) protocol, we propose a lightweight mutual authentication mechanism in improving fast PMIPv6-based network mobility scheme (LMAIFPNEMO). This scheme uses authentication, authorization and accounting (AAA) servers to enhance the security of the protocol IFP-NEMO which allows the integration of improved fast proxy mobile IPv6 (PMIPv6) in network mobility (NEMO). We use only symmetric cryptographic, generated nonces and hash operation primitives to ensure a secure authentication procedure. Then, we analyze the security aspect of the proposed scheme and evaluate it using the automated validation of internet security protocols and applications (AVISPA) software which has proved that authentication goals are achieved.
Nowadays, the design of a secure access authentication protocol in heterogeneous networks achieving seamless roaming across radio access technologies for mobile users (MUs) is a major technical challenge. This paper proposes a Distributed Anonymous Authentication (DAA) protocol to resolve the problems of heavy signaling overheads and long signaling delay when authentication is executed in a centralized manner. By applying MUs and point of attachments (PoAs) as group members, the adopted group signature algorithms provide identity verification directly without sharing secrets in advance, which significantly reduces signaling overheads. Moreover, MUs sign messages on behalf of the group, so that anonymity and unlinkability against PoAs are provided and thus privacy is preserved. Performance analysis confirm the advantages of DAA over existing solutions.