Visible to the public Biblio

Found 345 results

Filters: Keyword is cybersecurity  [Clear All Filters]
2022-03-08
Nazli Choucri.  2016.  Explorations in International Relations.
Explorations in Cyber International Relations (ECIR) is a collaborative research program of Massachusetts Institute of Technology and Harvard University designed to create multi-disciplinary approaches to the emergence of cyberspace in international relations. The purpose is to support policy analysis by combining leading-edge methods in computer science and technology with international law and long-range political and economic inquiry. ECIR is based in MIT Department of Political Science, with participation from Computer Science and Artificial Intelligence Laboratory (CSAIL) and Sloan School of Management. At Harvard, ECIR is based in the Kennedy School Belfer Center for Science and International Affairs, with participation of Berkman Klein Center for Internet & Society at Harvard Law School.
Nazli Choucri, P.S Raghavan, Dr. Sandis Šrāders, Nguyễn Anh Tuấn.  2020.  The Quad Roundtable at the Riga Conference. 2020 Riga Conference. :1–82.
Almost everyone recognizes the emergence of a new challenge in the cyber domain, namely increased threats to the security of the Internet and its various uses. Seldom does a day go by without dire reports and hair raising narratives about unauthorized intrusions, access to content, or damage to systems, or operations. And, of course, a close correlate is the loss of value. An entire industry is around threats to cyber security, prompting technological innovations and operational strategies that promise to prevent damage and destruction. This paper is a collection chapters entitled 1) "Cybersecurity – Problems, Premises, Perspectives," 2) "An Abbreviated Technical Perspective on Cybersecurity," 3) "The Conceptual Underpinning of Cyber Security Studies" 4) "Cyberspace as the Domain of Content," 5) "The Conceptual Underpinning of Cyber Security Studies," 6) "China’s Perspective on Cyber Security," 7) "Pursuing Deterrence Internationally in Cyberspace," 8) "Is Deterrence Possible in Cyber Warfare?" and 9) "A Theoretical Framework for Analyzing Interactions between Contemporary Transnational Activism and Digital Communication."
Choucri, Nazli, Jackson, Chrisma.  2016.  Perspectives on Cybersecurity: A Collaborative Study. MIT Political Science Network. :1–82.
Almost everyone recognizes the emergence of a new challenge in the cyber domain, namely increased threats to the security of the Internet and its various uses. Seldom does a day go by without dire reports and hair raising narratives about unauthorized intrusions, access to content, or damage to systems, or operations. And, of course, a close correlate is the loss of value. An entire industry is around threats to cyber security, prompting technological innovations and operational strategies that promise to prevent damage and destruction. This paper is a collection chapters entitled 1) "Cybersecurity – Problems, Premises, Perspectives," 2) "An Abbreviated Technical Perspective on Cybersecurity," 3) "The Conceptual Underpinning of Cyber Security Studies" 4) "Cyberspace as the Domain of Content," 5) "The Conceptual Underpinning of Cyber Security Studies," 6) "China’s Perspective on Cyber Security," 7) "Pursuing Deterrence Internationally in Cyberspace," 8) "Is Deterrence Possible in Cyber Warfare?" and 9) "A Theoretical Framework for Analyzing Interactions between Contemporary Transnational Activism and Digital Communication."
Choucri, Nazli.  2016.  ECIR Final Report. Explorations in International Relations. :1–121.
Abstract In international relations, the traditional approaches to theory and research, practice, and policy were derived from experiences in the 19th and 20th centuries. But cyberspace, shaped by human ingenuity, is a venue for social interaction, an environment for social communication, and an enabler of new mechanisms for power and leverage. Cyberspace creates new condition — problems and opportunities — for which there are no clear precedents in human history. Already we recognize new patterns of conflict and contention, and concepts such as cyberwar, cybersecurity, and cyberattack are in circulation, buttressed by considerable evidence of cyber espionage and cybercrime. The research problem is this: distinct features of cyberspace — such as time, scope, space, permeation, ubiquity, participation and attribution — challenge traditional modes of inquiry in international relations and limit their utility. The interdisciplinary MIT-Harvard ECIR research project explores various facets of cyber international relations, including its implications for power and politics, conflict and war. Our primary mission and principal goal is to increase the capacity of the nation to address the policy challenges of the cyber domain. Our research is intended to influence today’s policy makers with the best thinking about issues and opportunities, and to train tomorrow’s policy makers to be effective in understanding choice and consequence in cyber matters. Accordingly, the ECIR vision is to create an integrated knowledge domain of international relations in the cyber age, that is (a) multidisciplinary, theory-driven, technically and empirically; (b) clarifies threats and opportunities in cyberspace for national security, welfare, and influence;(c) provides analytical tools for understanding and managing transformation and change; and (d) attracts and educates generations of researchers, scholars, and analysts for international relations in the new cyber age.
2022-02-25
Sebastian-Cardenas, D., Gourisetti, S., Mylrea, M., Moralez, A., Day, G., Tatireddy, V., Allwardt, C., Singh, R., Bishop, R., Kaur, K. et al..  2021.  Digital data provenance for the power grid based on a Keyless Infrastructure Security Solution. 2021 Resilience Week (RWS). :1–10.
In this work a data provenance system for grid-oriented applications is presented. The proposed Keyless Infrastructure Security Solution (KISS) provides mechanisms to store and maintain digital data fingerprints that can later be used to validate and assert data provenance using a time-based, hash tree mechanism. The developed solution has been designed to satisfy the stringent requirements of the modern power grid including execution time and storage necessities. Its applicability has been tested using a lab-scale, proof-of-concept deployment that secures an energy management system against the attack sequence observed on the 2016 Ukrainian power grid cyberattack. The results demonstrate a strong potential for enabling data provenance in a wide array of applications, including speed-sensitive applications such as those found in control room environments.
2022-02-22
Martin, Peter, Fan, Jian, Kim, Taejin, Vesey, Konrad, Greenwald, Lloyd.  2021.  Toward Effective Moving Target Defense Against Adversarial AI. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :993—998.
Deep learning (DL) models have been shown to be vulnerable to adversarial attacks. DL model security against adversarial attacks is critical to using DL-trained models in forward deployed systems, e.g. facial recognition, document characterization, or object detection. We provide results and lessons learned applying a moving target defense (MTD) strategy against iterative, gradient-based adversarial attacks. Our strategy involves (1) training a diverse ensemble of DL models, (2) applying randomized affine input transformations to inputs, and (3) randomizing output decisions. We report a primary lesson that this strategy is ineffective against a white-box adversary, which could completely circumvent output randomization using a deterministic surrogate. We reveal how our ensemble models lacked the diversity necessary for effective MTD. We also evaluate our MTD strategy against a black-box adversary employing an ensemble surrogate model. We conclude that an MTD strategy against black-box adversarial attacks crucially depends on lack of transferability between models.
Barker, John, Hamada, Amal, Azab, Mohamed.  2021.  Lightweight Proactive Moving-target Defense for Secure Data Exchange in IoT Networks. 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0317—0322.
Internet of Things (IoT) revolutionizes cutting-edge technologies by enabling smart sensing, and actuation of the physical world. IoT enables cooperation between numerous heterogeneous smart devices to exchange and aggregate data from the surrounding environment through the internet. Recently, the range of IoT technology could be utilized in the real world by the rapid spread of sensor devices. These capabilities open the door for vital challenges. Security is the major challenge that faces the IoT networks. Traditional solutions cannot tackle smart and powerful attackers. Moving Target Defense (MTD) deploys mechanisms and strategies that increase attackers' uncertainty and frustrate their attempt to eavesdrop the target to be protected. In addition, Steganography is the practice of concealing a message within another message. For security proposes, Steganography is used to hide significant data within any transmitted messages, such as images, videos, and text files. This paper presents Stegano-MTD framework that enables combination between MTD mechanisms with steganography. This combination offers a lightweight solution that can be implemented on the IoT network. Stegano-MTD slices the message into small labeled chunks and sends them randomly through the network's nodes. Steganography is used for hide the key file that used to reconstruct the original data. Simulation results show the effectiveness of the presented solution.
Jenkins, Chris, Vugrin, Eric, Manickam, Indu, Troutman, Nicholas, Hazelbaker, Jacob, Krakowiak, Sarah, Maxwell, Josh, Brown, Richard.  2021.  Moving Target Defense for Space Systems. 2021 IEEE Space Computing Conference (SCC). :60—71.
Space systems provide many critical functions to the military, federal agencies, and infrastructure networks. Nation-state adversaries have shown the ability to disrupt critical infrastructure through cyber-attacks targeting systems of networked, embedded computers. Moving target defenses (MTDs) have been proposed as a means for defending various networks and systems against potential cyber-attacks. MTDs differ from many cyber resilience technologies in that they do not necessarily require detection of an attack to mitigate the threat. We devised a MTD algorithm and tested its application to a real-time network. We demonstrated MTD usage with a real-time protocol given constraints not typically found in best-effort networks. Second, we quantified the cyber resilience benefit of MTD given an exfiltration attack by an adversary. For our experiment, we employed MTD which resulted in a reduction of adversarial knowledge by 97%. Even when the adversary can detect when the address changes, there is still a reduction in adversarial knowledge when compared to static addressing schemes. Furthermore, we analyzed the core performance of the algorithm and characterized its unpredictability using nine different statistical metrics. The characterization highlighted the algorithm has good unpredictability characteristics with some opportunity for improvement to produce more randomness.
2022-02-09
Ranade, Priyanka, Piplai, Aritran, Mittal, Sudip, Joshi, Anupam, Finin, Tim.  2021.  Generating Fake Cyber Threat Intelligence Using Transformer-Based Models. 2021 International Joint Conference on Neural Networks (IJCNN). :1–9.
Cyber-defense systems are being developed to automatically ingest Cyber Threat Intelligence (CTI) that contains semi-structured data and/or text to populate knowledge graphs. A potential risk is that fake CTI can be generated and spread through Open-Source Intelligence (OSINT) communities or on the Web to effect a data poisoning attack on these systems. Adversaries can use fake CTI examples as training input to subvert cyber defense systems, forcing their models to learn incorrect inputs to serve the attackers' malicious needs. In this paper, we show how to automatically generate fake CTI text descriptions using transformers. Given an initial prompt sentence, a public language model like GPT-2 with fine-tuning can generate plausible CTI text that can mislead cyber-defense systems. We use the generated fake CTI text to perform a data poisoning attack on a Cybersecurity Knowledge Graph (CKG) and a cybersecurity corpus. The attack introduced adverse impacts such as returning incorrect reasoning outputs, representation poisoning, and corruption of other dependent AI-based cyber defense systems. We evaluate with traditional approaches and conduct a human evaluation study with cyber-security professionals and threat hunters. Based on the study, professional threat hunters were equally likely to consider our fake generated CTI and authentic CTI as true.
2022-02-07
Ben Abdel Ouahab, Ikram, Elaachak, Lotfi, Alluhaidan, Yasser A., Bouhorma, Mohammed.  2021.  A new approach to detect next generation of malware based on machine learning. 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :230–235.
In these days, malware attacks target different kinds of devices as IoT, mobiles, servers even the cloud. It causes several hardware damages and financial losses especially for big companies. Malware attacks represent a serious issue to cybersecurity specialists. In this paper, we propose a new approach to detect unknown malware families based on machine learning classification and visualization technique. A malware binary is converted to grayscale image, then for each image a GIST descriptor is used as input to the machine learning model. For the malware classification part we use 3 machine learning algorithms. These classifiers are so efficient where the highest precision reach 98%. Once we train, test and evaluate models we move to simulate 2 new malware families. We do not expect a good prediction since the model did not know the family; however our goal is to analyze the behavior of our classifiers in the case of new family. Finally, we propose an approach using a filter to know either the classification is normal or it's a zero-day malware.
2022-02-04
Al-Turkistani, Hilalah F., Aldobaian, Samar, Latif, Rabia.  2021.  Enterprise Architecture Frameworks Assessment: Capabilities, Cyber Security and Resiliency Review. 2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA). :79–84.

Recent technological advancement demands organizations to have measures in place to manage their Information Technology (IT) systems. Enterprise Architecture Frameworks (EAF) offer companies an efficient technique to manage their IT systems aligning their business requirements with effective solutions. As a result, experts have developed multiple EAF's such as TOGAF, Zachman, MoDAF, DoDAF, SABSA to help organizations to achieve their objectives by reducing the costs and complexity. These frameworks however, concentrate mostly on business needs lacking holistic enterprise-wide security practices, which may cause enterprises to be exposed for significant security risks resulting financial loss. This study focuses on evaluating business capabilities in TOGAF, NIST, COBIT, MoDAF, DoDAF, SABSA, and Zachman, and identify essential security requirements in TOGAF, SABSA and COBIT19 frameworks by comparing their resiliency processes, which helps organization to easily select applicable framework. The study shows that; besides business requirements, EAF need to include precise cybersecurity guidelines aligning EA business strategies. Enterprises now need to focus more on building resilient approach, which is beyond of protection, detection and prevention. Now enterprises should be ready to withstand against the cyber-attacks applying relevant cyber resiliency approach improving the way of dealing with impacts of cybersecurity risks.

2022-02-03
Zhang, Kevin, Olmsted, Aspen.  2021.  Examining Autonomous Vehicle Operating Systems Vulnerabilities using a Cyber-Physical Approach. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). :976—981.
Increasingly, the transportation industry has moved towards automation to improve safety, fuel efficiency, and system productivity. However, the increased scrutiny that automated vehicles (AV) face over functional safety has hindered the industry's unbridled confidence in self-driving technologies. As AVs are cyber-physical systems, they utilize distributed control to accomplish a range of safety-critical driving tasks. The Operation Systems (OS) serve as the core of these control systems. Therefore, their designs and implementation must incorporate ways to protect AVs against what must be assumed to be inevitable cyberattacks to meet the overall AV functional safety requirements. This paper investigates the connection between functional safety and cybersecurity in the context of OS. This study finds that risks due to delays can worsen by potential cybersecurity vulnerabilities through a case example of an automated vehicle following. Furthermore, attack surfaces and cybersecurity countermeasures for protecting OSs from security breaches are addressed.
2022-01-25
Chouhan, Pushpinder Kaur, Chen, Liming, Hussain, Tazar, Beard, Alfie.  2021.  A Situation Calculus based approach to Cognitive Modelling for Responding to IoT Cyberattacks. 2021 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/IOP/SCI). :219—225.
Both the sophistication and scale of cyberattacks are increasing, revealing the extent of risks at which critical infrastructure and other information and communication systems are exposed. Furthermore, the introduction of IoT devices in a number of different applications, ranging from home automation to the monitoring of critical infrastructure, has created an even more complicated cybersecurity landscape. A large amount of research has been done on detecting these attacks in real time, however mitigation is left to security experts, which is time consuming and may have economic consequences. In addition, there is no public data available for action selection that could enable the use of the latest techniques in machine learning or deep learning for this area. Currently, most systems deploy a rule-based response selection methodology for mitigating detected attacks. In this paper, we introduce a situation calculus-based approach to automated response for IoT cyberattacks. The approach offers explicit semantic-rich cognitive modeling of attacks, effects and actions and supports situation inference for timely and accurate responses. We demonstrate the effectiveness of our approach for modelling and responding to cyberattacks by implementing a use case in a real-world IoT scenario.
Marksteiner, Stefan, Marko, Nadja, Smulders, Andre, Karagiannis, Stelios, Stahl, Florian, Hamazaryan, Hayk, Schlick, Rupert, Kraxberger, Stefan, Vasenev, Alexandr.  2021.  A Process to Facilitate Automated Automotive Cybersecurity Testing. 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring). :1—7.
Modern vehicles become increasingly digitalized with advanced information technology-based solutions like advanced driving assistance systems and vehicle-to-x communications. These systems are complex and interconnected. Rising complexity and increasing outside exposure has created a steadily rising demand for more cyber-secure systems. Thus, also standardization bodies and regulators issued standards and regulations to prescribe more secure development processes. This security, however, also has to be validated and verified. In order to keep pace with the need for more thorough, quicker and comparable testing, today's generally manual testing processes have to be structured and optimized. Based on existing and emerging standards for cybersecurity engineering, this paper therefore outlines a structured testing process for verifying and validating automotive cybersecurity, for which there is no standardized method so far. Despite presenting a commonly structured framework, the process is flexible in order to allow implementers to utilize their own, accustomed toolsets.
Babaei, Armin.  2021.  Lightweight and Reconfigurable Security Architecture for Internet of Things devices. 2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :307—309.

Assuring Cybersecurity for the Internet of things (IoT) remains a significant challenge. Most IoT devices have minimal computational power and should be secured with lightweight security techniques (optimized computation and energy tradeoff). Furthermore, IoT devices are mainly designed to have long lifetimes (e.g., 10–15 years), forcing the designers to open the system for possible future updates. Here, we developed a lightweight and reconfigurable security architecture for IoT devices. Our research goal is to create a simple authentication protocol based on physical unclonable function (PUF) for FPGA-based IoT devices. The main challenge toward realization of this protocol is to make it make it resilient against machine learning attacks and it shall not use cryptography primitives.

Rouff, Christopher, Watkins, Lanier, Sterritt, Roy, Hariri, Salim.  2021.  SoK: Autonomic Cybersecurity - Securing Future Disruptive Technologies. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :66—72.
This paper is a systemization of knowledge of autonomic cybersecurity. Disruptive technologies, such as IoT, AI and autonomous systems, are becoming more prevalent and often have little or no cybersecurity protections. This lack of security is contributing to the expanding cybersecurity attack surface. The autonomic computing initiative was started to address the complexity of administering complex computing systems by making them self-managing. Autonomic systems contain attributes to address cyberattacks, such as self-protecting and self-healing that can secure new technologies. There has been a number of research projects on autonomic cybersecurity, with different approaches and target technologies, many of them disruptive. This paper reviews autonomic computing, analyzes research on autonomic cybersecurity, and provides a systemization of knowledge of the research. The paper concludes with identification of gaps in autonomic cybersecurity for future research.
2022-01-10
Viktoriia, Hrechko, Hnatienko, Hrygorii, Babenko, Tetiana.  2021.  An Intelligent Model to Assess Information Systems Security Level. 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4). :128–133.

This research presents a model for assessing information systems cybersecurity maturity level. The main purpose of the model is to provide comprehensive support for information security specialists and auditors in checking information systems security level, checking security policy implementation, and compliance with security standards. The model synthesized based on controls and practices present in ISO 27001 and ISO 27002 and the neural network of direct signal propagation. The methodology described in this paper can also be extended to synthesis a model for different security control sets and, consequently, to verify compliance with another security standard or policy. The resulting model describes a real non-automated process of assessing the maturity of an IS at an acceptable level and it can be recommended to be used in the process of real audit of Information Security Management Systems.

2021-12-21
Ahn, Bohyun, Bere, Gomanth, Ahmad, Seerin, Choi, JinChun, Kim, Taesic, Park, Sung-won.  2021.  Blockchain-Enabled Security Module for Transforming Conventional Inverters toward Firmware Security-Enhanced Smart Inverters. 2021 IEEE Energy Conversion Congress and Exposition (ECCE). :1307–1312.
As the traditional inverters are transforming toward more intelligent inverters with advanced information and communication technologies, the cyber-attack surface has been remarkably expanded. Specifically, securing firmware of smart inverters from cyber-attacks is crucial. This paper provides expanded firmware attack surface targeting smart inverters. Moreover, this paper proposes a security module for transforming a conventional inverter to a firmware security built-in smart inverter by preventing potential malware and unauthorized firmware update attacks as well as fast automated inverter recovery from zero-day attacks. Furthermore, the proposed security module as a client of blockchain is connected to blockchain severs to fully utilize blockchain technologies such as membership service, ledgers, and smart contracts to detect and mitigate the firmware attacks. The proposed security module framework is implemented in an Internet-of-Thing (IoT) device and validated by experiments.
2021-12-20
Park, Kyuchan, Ahn, Bohyun, Kim, Jinsan, Won, Dongjun, Noh, Youngtae, Choi, JinChun, Kim, Taesic.  2021.  An Advanced Persistent Threat (APT)-Style Cyberattack Testbed for Distributed Energy Resources (DER). 2021 IEEE Design Methodologies Conference (DMC). :1–5.
Advanced Persistent Threat (APT) is a professional stealthy threat actor who uses continuous and sophisticated attack techniques which have not been well mitigated by existing defense strategies. This paper proposes an APT-style cyber-attack tested for distributed energy resources (DER) in cyber-physical environments. The proposed security testbed consists of: 1) a real-time DER simulator; 2) a real-time cyber system using real network systems and a server; and 3) penetration testing tools generating APT-style attacks as cyber events. Moreover, this paper provides a cyber kill chain model for a DER system based on a latest MITRE’s cyber kill chain model to model possible attack stages. Several real cyber-attacks are created and their impacts in a DER system are provided to validate the feasibility of the proposed security testbed for DER systems.
Kim, Jaewon, Ko, Woo-Hyun, Kumar, P. R..  2021.  Cyber-Security through Dynamic Watermarking for 2-rotor Aerial Vehicle Flight Control Systems. 2021 International Conference on Unmanned Aircraft Systems (ICUAS). :1277–1283.
We consider the problem of security for unmanned aerial vehicle flight control systems. To provide a concrete setting, we consider the security problem in the context of a helicopter which is compromised by a malicious agent that distorts elevation measurements to the control loop. This is a particular example of the problem of the security of stochastic control systems under erroneous observation measurements caused by malicious sensors within the system. In order to secure the control system, we consider dynamic watermarking, where a private random excitation signal is superimposed onto the control input of the flight control system. An attack detector at the actuator can then check if the reported sensor measurements are appropriately correlated with the private random excitation signal. This is done via two specific statistical tests whose violation signifies an attack. We apply dynamic watermarking technique to a 2-rotor-based 3-DOF helicopter control system test-bed. We demonstrate through both simulation and experimental results the performance of the attack detector on two attack models: a stealth attack, and a random bias injection attack.
2021-11-30
Cultice, Tyler, Ionel, Dan, Thapliyal, Himanshu.  2020.  Smart Home Sensor Anomaly Detection Using Convolutional Autoencoder Neural Network. 2020 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS). :67–70.
We propose an autoencoder based approach to anomaly detection in smart grid systems. Data collecting sensors within smart home systems are susceptible to many data corruption issues, such as malicious attacks or physical malfunctions. By applying machine learning to a smart home or grid, sensor anomalies can be detected automatically for secure data collection and sensor-based system functionality. In addition, we tested the effectiveness of this approach on real smart home sensor data collected for multiple years. An early detection of such data corruption issues is essential to the security and functionality of the various sensors and devices within a smart home.
Pliatsios, Dimitrios, Sarigiannidis, Panagiotis, Efstathopoulos, Georgios, Sarigiannidis, Antonios, Tsiakalos, Apostolos.  2020.  Trust Management in Smart Grid: A Markov Trust Model. 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST). :1–4.
By leveraging the advancements in Information and Communication Technologies (ICT), Smart Grid (SG) aims to modernize the traditional electric power grid towards efficient distribution and reliable management of energy in the electrical domain. The SG Advanced Metering Infrastructure (AMI) contains numerous smart meters, which are deployed throughout the distribution grid. However, these smart meters are susceptible to cyberthreats that aim to disrupt the normal operation of the SG. Cyberattacks can have various consequences in the smart grid, such as incorrect customer billing or equipment destruction. Therefore, these devices should operate on a trusted basis in order to ensure the availability, confidentiality, and integrity of the metering data. In this paper, we propose a Markov chain trust model that determines the Trust Value (TV) for each AMI device based on its behavior. Finally, numerical computations were carried out in order to investigate the reaction of the proposed model to the behavior changes of a device.
2021-11-29
Gnatyuk, Sergiy, Okhrimenko, Tetiana, Azarenko, Olena, Fesenko, Andriy, Berdibayev, Rat.  2020.  Experimental Study of Secure PRNG for Q-trits Quantum Cryptography Protocols. 2020 IEEE 11th International Conference on Dependable Systems, Services and Technologies (DESSERT). :183–188.
Quantum cryptography doesn't depend on computational capabilities of intruders; it uses inviolability of quantum physics postulates (postulate of measurement, no-cloning theorem, uncertainty principle). Some quantum key distribution protocols have absolute (theoretical and informational) stability, but quantum secure direct communication (deterministic) protocols have only asymptotic stability. For a whole class of methods to ensure Q-trit deterministic quantum cryptography protocols stability, reliable trit generation method is required. In this paper, authors have developed a high-speed and secure pseudorandom number (PRN) generation method. This method includes the following steps: initialization of the internal state vector and direct PRN generation. Based on this method TriGen v.2.0 pseudo-random number generator (PRNG) was developed and studied in practice. Therefore, analysing the results of study it can be concluded following: 1) Proposed Q-trit PRNG is better then standard C ++ PRNG and can be used on practice for critical applications; 2) NIST STS technique cannot be used to evaluate the quality (statistical stability) of the Q-trit PRNG and formed trit sequences; 3) TritSTS 2020 technique is suitable for evaluating Q-trit PRNG and trit sequences quality. A future research study can be related to developing a fully-functional version of TritSTS technique and software tool.
2021-10-12
Deng, Perry, Linsky, Cooper, Wright, Matthew.  2020.  Weaponizing Unicodes with Deep Learning -Identifying Homoglyphs with Weakly Labeled Data. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1–6.
Visually similar characters, or homoglyphs, can be used to perform social engineering attacks or to evade spam and plagiarism detectors. It is thus important to understand the capabilities of an attacker to identify homoglyphs - particularly ones that have not been previously spotted - and leverage them in attacks. We investigate a deep-learning model using embedding learning, transfer learning, and augmentation to determine the visual similarity of characters and thereby identify potential homoglyphs. Our approach uniquely takes advantage of weak labels that arise from the fact that most characters are not homoglyphs. Our model drastically outperforms the Normal-ized Compression Distance approach on pairwise homoglyph identification, for which we achieve an average precision of 0.97. We also present the first attempt at clustering homoglyphs into sets of equivalence classes, which is more efficient than pairwise information for security practitioners to quickly lookup homoglyphs or to normalize confusable string encodings. To measure clustering performance, we propose a metric (mBIOU) building on the classic Intersection-Over-Union (IOU) metric. Our clustering method achieves 0.592 mBIOU, compared to 0.430 for the naive baseline. We also use our model to predict over 8,000 previously unknown homoglyphs, and find good early indications that many of these may be true positives. Source code and list of predicted homoglyphs are uploaded to Github: https://github.com/PerryXDeng/weaponizing\_unicode.
Ackley, Darryl, Yang, Hengzhao.  2020.  Exploration of Smart Grid Device Cybersecurity Vulnerability Using Shodan. 2020 IEEE Power Energy Society General Meeting (PESGM). :1–5.
The generation, transmission, distribution, and storage of electric power is becoming increasingly decentralized. Advances in Distributed Energy Resources (DERs) are rapidly changing the nature of the power grid. Moreover, the accommodation of these new technologies by the legacy grid requires that an increasing number of devices be Internet connected so as to allow for sensor and actuator information to be collected, transmitted, and processed. With the wide adoption of the Internet of Things (IoT), the cybersecurity vulnerabilities of smart grid devices that can potentially affect the stability, reliability, and resilience of the power grid need to be carefully examined and addressed. This is especially true in situations in which smart grid devices are deployed with default configurations or without reasonable protections against malicious activities. While much work has been done to characterize the vulnerabilities associated with Supervisory Control and Data Acquisition (SCADA) and Industrial Control System (ICS) devices, this paper demonstrates that similar vulnerabilities associated with the newer class of IoT smart grid devices are becoming a concern. Specifically, this paper first performs an evaluation of such devices using the Shodan platform and text processing techniques to analyze a potential vulnerability involving the lack of password protection. This work further explores several Shodan search terms that can be used to identify additional smart grid components that can be evaluated in terms of cybersecurity vulnerabilities. Finally, this paper presents recommendations for the more secure deployment of such smart grid devices.