Visible to the public Biblio

Found 345 results

Filters: Keyword is cybersecurity  [Clear All Filters]
2021-09-30
Latif, Shahid, Idrees, Zeba, Zou, Zhuo, Ahmad, Jawad.  2020.  DRaNN: A Deep Random Neural Network Model for Intrusion Detection in Industrial IoT. 2020 International Conference on UK-China Emerging Technologies (UCET). :1–4.
Industrial Internet of Things (IIoT) has arisen as an emerging trend in the industrial sector. Millions of sensors present in IIoT networks generate a massive amount of data that can open the doors for several cyber-attacks. An intrusion detection system (IDS) monitors real-time internet traffic and identify the behavior and type of network attacks. In this paper, we presented a deep random neural (DRaNN) based scheme for intrusion detection in IIoT. The proposed scheme is evaluated by using a new generation IIoT security dataset UNSW-NB15. Experimental results prove that the proposed model successfully classified nine different types of attacks with a low false-positive rate and great accuracy of 99.54%. To validate the feasibility of the proposed scheme, experimental results are also compared with state-of-the-art deep learning-based intrusion detection schemes. The proposed model achieved a higher attack detection rate of 99.41%.
2021-09-21
Chen, Chin-Wei, Su, Ching-Hung, Lee, Kun-Wei, Bair, Ping-Hao.  2020.  Malware Family Classification Using Active Learning by Learning. 2020 22nd International Conference on Advanced Communication Technology (ICACT). :590–595.
In the past few years, the malware industry has been thriving. Malware variants among the same malware family shared similar behavioural patterns or signatures reflecting their purpose. We propose an approach that combines support vector machine (SVM) classifiers and active learning by learning (ALBL) techniques to deal with insufficient labeled data in terms of the malware classification tasks. The proposed approach is evaluated with the malware family dataset from Microsoft Malware Classification Challenge (BIG 2015) on Kaggle. The results show that ALBL techniques can effectively boost the performance of our machine learning models and improve the quality of labeled samples.
Barr, Joseph R., Shaw, Peter, Abu-Khzam, Faisal N., Yu, Sheng, Yin, Heng, Thatcher, Tyler.  2020.  Combinatorial Code Classification Amp; Vulnerability Rating. 2020 Second International Conference on Transdisciplinary AI (TransAI). :80–83.
Empirical analysis of source code of Android Fluoride Bluetooth stack demonstrates a novel approach of classification of source code and rating for vulnerability. A workflow that combines deep learning and combinatorial techniques with a straightforward random forest regression is presented. Two kinds of embedding are used: code2vec and LSTM, resulting in a distance matrix that is interpreted as a (combinatorial) graph whose vertices represent code components, functions and methods. Cluster Editing is then applied to partition the vertex set of the graph into subsets representing nearly complete subgraphs. Finally, the vectors representing the components are used as features to model the components for vulnerability risk.
2021-09-16
Mancini, Federico, Bruvoll, Solveig, Melrose, John, Leve, Frederick, Mailloux, Logan, Ernst, Raphael, Rein, Kellyn, Fioravanti, Stefano, Merani, Diego, Been, Robert.  2020.  A Security Reference Model for Autonomous Vehicles in Military Operations. 2020 IEEE Conference on Communications and Network Security (CNS). :1–8.
In a previous article [1] we proposed a layered framework to support the assessment of the security risks associated with the use of autonomous vehicles in military operations and determine how to manage these risks appropriately. We established consistent terminology and defined the problem space, while exploring the first layer of the framework, namely risks from the mission assurance perspective. In this paper, we develop the second layer of the framework. This layer focuses on the risk assessment of the vehicles themselves and on producing a highlevel security design adequate for the mission defined in the first layer. To support this process, we also define a reference model for autonomous vehicles to use as a common basis for the assessment of risks and the design of the security controls.
2021-09-07
Zebari, Rizgar R., Zeebaree, Subhi R. M., Sallow, Amira Bibo, Shukur, Hanan M., Ahmad, Omar M., Jacksi, Karwan.  2020.  Distributed Denial of Service Attack Mitigation Using High Availability Proxy and Network Load Balancing. 2020 International Conference on Advanced Science and Engineering (ICOASE). :174–179.
Nowadays, cybersecurity threat is a big challenge to all organizations that present their services over the Internet. Distributed Denial of Service (DDoS) attack is the most effective and used attack and seriously affects the quality of service of each E-organization. Hence, mitigation this type of attack is considered a persistent need. In this paper, we used Network Load Balancing (NLB) and High Availability Proxy (HAProxy) as mitigation techniques. The NLB is used in the Windows platform and HAProxy in the Linux platform. Moreover, Internet Information Service (IIS) 10.0 is implemented on Windows server 2016 and Apache 2 on Linux Ubuntu 16.04 as web servers. We evaluated each load balancer efficiency in mitigating synchronize (SYN) DDoS attack on each platform separately. The evaluation process is accomplished in a real network and average response time and average CPU are utilized as metrics. The results illustrated that the NLB in the Windows platform achieved better performance in mitigation SYN DDOS compared to HAProxy in the Linux platform. Whereas, the average response time of the Window webservers is reduced with NLB. However, the impact of the SYN DDoS on the average CPU usage of the IIS 10.0 webservers was more than those of the Apache 2 webservers.
2021-08-31
KARA, Ilker, AYDOS, Murat.  2020.  Cyber Fraud: Detection and Analysis of the Crypto-Ransomware. 2020 11th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0764–0769.
Currently as the widespread use of virtual monetary units (like Bitcoin, Ethereum, Ripple, Litecoin) has begun, people with bad intentions have been attracted to this area and have produced and marketed ransomware in order to obtain virtual currency easily. This ransomware infiltrates the victim's system with smartly-designed methods and encrypts the files found in the system. After the encryption process, the attacker leaves a message demanding a ransom in virtual currency to open access to the encrypted files and warns that otherwise the files will not be accessible. This type of ransomware is becoming more popular over time, so currently it is the largest information technology security threat. In the literature, there are many studies about detection and analysis of this cyber-bullying. In this study, we focused on crypto-ransomware and investigated a forensic analysis of a current attack example in detail. In this example, the attack method and behavior of the crypto-ransomware were analyzed and it was identified that information belonging to the attacker was accessible. With this dimension, we think our study will significantly contribute to the struggle against this threat.
2021-08-12
Shin, Sanggyu, Seto, Yoichi.  2020.  Development of IoT Security Exercise Contents for Cyber Security Exercise System. 2020 13th International Conference on Human System Interaction (HSI). :1—6.
In this paper, we discuss the development of the IoT security exercise content and the implementation of it to the CyExec. While the Internet of Things (IoT) devices are becoming more popular, vulnerability countermeasures are insufficient, and many incidents have occurred. It is because there is insufficient protection against vulnerabilities specific to IoT equipment. Also, the developers and users have low awareness of IoT devices against vulnerabilities from the past. Therefore, the importance of security education on IoT devices is increasing. However, the enormous burden of introduction and operation costs limited the use of commercial cybersecurity exercise systems. CyExec (Cyber Security Exercise System), consisting of a virtual environment using VirtualBox and Docker, is a low-cost and flexible cybersecurity exercise system, which we have proposed for the dissemination of security education. And the content of the exercises for CyExec is composed of the Basic exercises and Applied exercises.
2021-08-11
Lau, Pikkin, Wei, Wei, Wang, Lingfeng, Liu, Zhaoxi, Ten, Chee-Wooi.  2020.  A Cybersecurity Insurance Model for Power System Reliability Considering Optimal Defense Resource Allocation. IEEE Transactions on Smart Grid. 11:4403–4414.
With the increasing application of Information and Communication Technologies (ICTs), cyberattacks have become more prevalent against Cyber-Physical Systems (CPSs) such as the modern power grids. Various methods have been proposed to model the cybersecurity threats, but so far limited studies have been focused on the defensive strategies subject to the limited security budget. In this paper, the power supply reliability is evaluated considering the strategic allocation of defense resources. Specifically, the optimal mixed strategies are formulated by the Stackelberg Security Game (SSG) to allocate the defense resources on multiple targets subject to cyberattacks. The cyberattacks against the intrusion-tolerant Supervisory Control and Data Acquisition (SCADA) system are mathematically modeled by Semi-Markov Process (SMP) kernel. The intrusion tolerance capability of the SCADA system provides buffered residence time before the substation failure to enhance the network robustness against cyberattacks. Case studies of the cyberattack scenarios are carried out to demonstrate the intrusion tolerance capability. Depending on the defense resource allocation scheme, the intrusion-tolerant SCADA system possesses varying degrees of self-healing capability to restore to the good state and prevent the substations from failure. If more defense resources are invested on the substations, the intrusion tolerant capability can be further enhanced for protecting the substations. Finally, the actuarial insurance principle is designed to estimate transmission companies' individual premiums considering correlated cybersecurity risks. The proposed insurance premium principle is designed to provide incentive for investments on enhancing the intrusion tolerance capability, which is verified by the results of case studies.
MILLAR, KYLE, CHENG, ADRIEL, CHEW, HONG GUNN, LIM, CHENG-CHEW.  2020.  Operating System Classification: A Minimalist Approach. 2020 International Conference on Machine Learning and Cybernetics (ICMLC). :143—150.
Operating system (OS) classification is of growing importance to network administrators and cybersecurity analysts alike. The composition of OSs on a network allows for a better quality of device management to be achieved. Additionally, it can be used to identify devices that pose a security risk to the network. However, the sheer number and diversity of OSs that comprise modern networks have vastly increased this management complexity. We leverage insights from social networking theory to provide an encryption-invariant OS classification technique that is quick to train and widely deployable on various network configurations. In particular, we show how an affiliation graph can be used as an input to a machine learning classifier to predict the OS of a device using only the IP addresses for which the device communicates with.We examine the effectiveness of our approach through an empirical analysis of 498 devices on a university campus’ wireless network. In particular, we show our methodology can classify different OS families (i.e., Apple, Windows, and Android OSs) with an accuracy of 99.3%. Furthermore, we extend this study by: 1) examining distinct OSs (e.g., iOS, OS X, and Windows 10); 2) investigating the interval of time required to make an accurate prediction; and, 3) determining the effectiveness of our approach after six months.
2021-06-24
Nilă, Constantin, Patriciu, Victor.  2020.  Taking advantage of unsupervised learning in incident response. 2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). :1–6.
This paper looks at new ways to improve the necessary time for incident response triage operations. By employing unsupervised K-means, enhanced by both manual and automated feature extraction techniques, the incident response team can quickly and decisively extrapolate malicious web requests that concluded to the investigated exploitation. More precisely, we evaluated the benefits of different visualization enhancing methods that can improve feature selection and other dimensionality reduction techniques. Furthermore, early tests of the gross framework have shown that the necessary time for triage is diminished, more so if a hybrid multi-model is employed. Our case study revolved around the need for unsupervised classification of unknown web access logs. However, the demonstrated principals may be considered for other applications of machine learning in the cybersecurity domain.
2021-05-25
Qian, Kai, Dan Lo, Chia-Tien, Guo, Minzhe, Bhattacharya, Prabir, Yang, Li.  2012.  Mobile security labware with smart devices for cybersecurity education. IEEE 2nd Integrated STEM Education Conference. :1—3.

Smart mobile devices such as smartphones and tablets have become an integral part of our society. However, it also becomes a prime target for attackers with malicious intents. There have been a number of efforts on developing innovative courseware to promote cybersecurity education and to improve student learning; however, hands-on labs are not well developed for smart mobile devices and for mobile security topics. In this paper, we propose to design and develop a mobile security labware with smart mobile devices to promote the cybersecurity education. The integration of mobile computing technologies and smart devices into cybersecurity education will connect the education to leading-edge information technologies, motivate and engage students in security learning, fill in the gap with IT industry need, and help faculties build expertise on mobile computing. In addition, the hands-on experience with mobile app development will promote student learning and supply them with a better understanding of security knowledge not only in classical security domains but also in the emerging mobile security areas.

Laato, Samuli, Farooq, Ali, Tenhunen, Henri, Pitkamaki, Tinja, Hakkala, Antti, Airola, Antti.  2020.  AI in Cybersecurity Education- A Systematic Literature Review of Studies on Cybersecurity MOOCs. 2020 IEEE 20th International Conference on Advanced Learning Technologies (ICALT). :6—10.

Machine learning (ML) techniques are changing both the offensive and defensive aspects of cybersecurity. The implications are especially strong for privacy, as ML approaches provide unprecedented opportunities to make use of collected data. Thus, education on cybersecurity and AI is needed. To investigate how AI and cybersecurity should be taught together, we look at previous studies on cybersecurity MOOCs by conducting a systematic literature review. The initial search resulted in 72 items and after screening for only peer-reviewed publications on cybersecurity online courses, 15 studies remained. Three of the studies concerned multiple cybersecurity MOOCs whereas 12 focused on individual courses. The number of published work evaluating specific cybersecurity MOOCs was found to be small compared to all available cybersecurity MOOCs. Analysis of the studies revealed that cybersecurity education is, in almost all cases, organised based on the topic instead of used tools, making it difficult for learners to find focused information on AI applications in cybersecurity. Furthermore, there is a gab in academic literature on how AI applications in cybersecurity should be taught in online courses.

Sabillon, Regner, Serra-Ruiz, Jordi, Cavaller, Victor, Cano, Jeimy.  2017.  A Comprehensive Cybersecurity Audit Model to Improve Cybersecurity Assurance: The CyberSecurity Audit Model (CSAM). 2017 International Conference on Information Systems and Computer Science (INCISCOS). :253—259.

Nowadays, private corporations and public institutions are dealing with constant and sophisticated cyberthreats and cyberattacks. As a general warning, organizations must build and develop a cybersecurity culture and awareness in order to defend against cybercriminals. Information Technology (IT) and Information Security (InfoSec) audits that were efficient in the past, are trying to converge into cybersecurity audits to address cyber threats, cyber risks and cyberattacks that evolve in an aggressive cyber landscape. However, the increase in number and complexity of cyberattacks and the convoluted cyberthreat landscape is challenging the running cybersecurity audit models and putting in evidence the critical need for a new cybersecurity audit model. This article reviews the best practices and methodologies of global leaders in the cybersecurity assurance and audit arena. By means of the analysis of the current approaches and theoretical background, their real scope, strengths and weaknesses are highlighted looking forward a most efficient and cohesive synthesis. As a resut, this article presents an original and comprehensive cybersecurity audit model as a proposal to be utilized for conducting cybersecurity audits in organizations and Nation States. The CyberSecurity Audit Model (CSAM) evaluates and validates audit, preventive, forensic and detective controls for all organizational functional areas. CSAM has been tested, implemented and validated along with the Cybersecurity Awareness TRAining Model (CATRAM) in a Canadian higher education institution. A research case study is being conducted to validate both models and the findings will be published accordingly.

Addae, Joyce, Radenkovic, Milena, Sun, Xu, Towey, Dave.  2016.  An extended perspective on cybersecurity education. 2016 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE). :367—369.
The current trend of ubiquitous device use whereby computing is becoming increasingly context-aware and personal, has created a growing concern for the protection of personal privacy. Privacy is an essential component of security, and there is a need to be able to secure personal computers and networks to minimize privacy depreciation within cyberspace. Human error has been recognized as playing a major role in security breaches: Hence technological solutions alone cannot adequately address the emerging security and privacy threats. Home users are particularly vulnerable to cybersecurity threats for a number of reasons, including a particularly important one that our research seeks to address: The lack of cybersecurity education. We argue that research seeking to address the human element of cybersecurity should not be limited only to the design of more usable technical security mechanisms, but should be extended and applied to offering appropriate training to all stakeholders within cyberspace.
Alnsour, Rawan, Hamdan, Basil.  2020.  Incorporating SCADA Cybersecurity in Undergraduate Engineering Technology Information Technology Education. 2020 Intermountain Engineering, Technology and Computing (IETC). :1—4.

The purpose of this paper is threefold. First, it makes the case for incorporating cybersecurity principles into undergraduate Engineering Technology Education and for incorporating Industrial Control Systems (ICS) principles into undergraduate Information Technology (IT)/Cybersecurity Education. Specifically, the paper highlights the knowledge/skill gap between engineers and IT/Cybersecurity professionals with respect to the cybersecurity of the ICS. Secondly, it identifies several areas where traditional IT systems and ICS intercept. This interception not only implies that ICS are susceptible to the same cyber threats as traditional IT/IS but also to threats that are unique to ICS. Subsequently, the paper identifies several areas where cybersecurity principles can be applied to ICS. By incorporating cybersecurity principles into Engineering Technology Education, the paper hopes to provide IT/Cybersecurity and Engineering Students with (a) the theoretical knowledge of the cybersecurity issues associated with administering and operating ICS and (b) the applied technical skills necessary to manage and mitigate the cyber risks against these systems. Overall, the paper holds the promise of contributing to the ongoing effort aimed at bridging the knowledge/skill gap with respect to securing ICS against cyber threats and attacks.

2021-05-13
Peck, Sarah Marie, Khan, Mohammad Maifi Hasan, Fahim, Md Abdullah Al, Coman, Emil N, Jensen, Theodore, Albayram, Yusuf.  2020.  Who Would Bob Blame? Factors in Blame Attribution in Cyberattacks Among the Non-Adopting Population in the Context of 2FA 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :778–789.
This study focuses on identifying the factors contributing to a sense of personal responsibility that could improve understanding of insecure cybersecurity behavior and guide research toward more effective messaging targeting non-adopting populations. Towards that, we ran a 2(account type) x2(usage scenario) x2(message type) between-group study with 237 United States adult participants on Amazon MTurk, and investigated how the non-adopting population allocates blame, and under what circumstances they blame the end user among the parties who hold responsibility: the software companies holding data, the attackers exposing data, and others. We find users primarily hold service providers accountable for breaches but they feel the same companies should not enforce stronger security policies on users. Results indicate that people do hold end users accountable for their behavior in the event of a breach, especially when the users' behavior affects others. Implications of our findings in risk communication is discussed in the paper.
2021-05-05
Tang, Sirui, Liu, Zhaoxi, Wang, Lingfeng.  2020.  Power System Reliability Analysis Considering External and Insider Attacks on the SCADA System. 2020 IEEE/PES Transmission and Distribution Conference and Exposition (T D). :1—5.

Cybersecurity of the supervisory control and data acquisition (SCADA) system, which is the key component of the cyber-physical systems (CPS), is facing big challenges and will affect the reliability of the smart grid. System reliability can be influenced by various cyber threats. In this paper, the reliability of the electric power system considering different cybersecurity issues in the SCADA system is analyzed by using Semi-Markov Process (SMP) and mean time-to-compromise (MTTC). External and insider attacks against the SCADA system are investigated with the SMP models and the results are compared. The system reliability is evaluated by reliability indexes including loss of load probability (LOLP) and expected energy not supplied (EENS) through Monte Carlo Simulations (MCS). The lurking threats of the cyberattacks are also analyzed in the study. Case studies were conducted on the IEEE Reliability Test System (RTS-96). The results show that with the increase of the MTTCs of the cyberattacks, the LOLP values decrease. When insider attacks are considered, both the LOLP and EENS values dramatically increase owing to the decreased MTTCs. The results provide insights into the establishment of the electric power system reliability enhancement strategies.

2021-04-27
Piplai, A., Ranade, P., Kotal, A., Mittal, S., Narayanan, S. N., Joshi, A..  2020.  Using Knowledge Graphs and Reinforcement Learning for Malware Analysis. 2020 IEEE International Conference on Big Data (Big Data). :2626—2633.

Machine learning algorithms used to detect attacks are limited by the fact that they cannot incorporate the back-ground knowledge that an analyst has. This limits their suitability in detecting new attacks. Reinforcement learning is different from traditional machine learning algorithms used in the cybersecurity domain. Compared to traditional ML algorithms, reinforcement learning does not need a mapping of the input-output space or a specific user-defined metric to compare data points. This is important for the cybersecurity domain, especially for malware detection and mitigation, as not all problems have a single, known, correct answer. Often, security researchers have to resort to guided trial and error to understand the presence of a malware and mitigate it.In this paper, we incorporate prior knowledge, represented as Cybersecurity Knowledge Graphs (CKGs), to guide the exploration of an RL algorithm to detect malware. CKGs capture semantic relationships between cyber-entities, including that mined from open source. Instead of trying out random guesses and observing the change in the environment, we aim to take the help of verified knowledge about cyber-attack to guide our reinforcement learning algorithm to effectively identify ways to detect the presence of malicious filenames so that they can be deleted to mitigate a cyber-attack. We show that such a guided system outperforms a base RL system in detecting malware.

Giannoutakis, K. M., Spathoulas, G., Filelis-Papadopoulos, C. K., Collen, A., Anagnostopoulos, M., Votis, K., Nijdam, N. A..  2020.  A Blockchain Solution for Enhancing Cybersecurity Defence of IoT. 2020 IEEE International Conference on Blockchain (Blockchain). :490—495.

The growth of IoT devices during the last decade has led to the development of smart ecosystems, such as smart homes, prone to cyberattacks. Traditional security methodologies support to some extend the requirement for preserving privacy and security of such deployments, but their centralized nature in conjunction with low computational capabilities of smart home gateways make such approaches not efficient. Last achievements on blockchain technologies allowed the use of such decentralized architectures to support cybersecurity defence mechanisms. In this work, a blockchain framework is presented to support the cybersecurity mechanisms of smart homes installations, focusing on the immutability of users and devices that constitute such environments. The proposed methodology provides also the appropriate smart contracts support for ensuring the integrity of the smart home gateway and IoT devices, as well as the dynamic and immutable management of blocked malicious IPs. The framework has been deployed on a real smart home environment demonstrating its applicability and efficiency.

Saganowski, S..  2020.  A Three-Stage Machine Learning Network Security Solution for Public Entities. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1097–1104.
In the era of universal digitization, ensuring network and data security is extremely important. As a part of the Regional Center for Cybersecurity initiative, a three-stage machine learning network security solution is being developed and will be deployed in March 2021. The solution consists of prevention, monitoring, and curation stages. As prevention, we utilize Natural Language Processing to extract the security-related information from social media, news portals, and darknet. A deep learning architecture is used to monitor the network in real-time and detect any abnormal traffic. A combination of regular expressions, pattern recognition, and heuristics are applied to the abuse reports to automatically identify intrusions that passed other security solutions. The lessons learned from the ongoing development of the system, alongside the results, extensive analysis, and discussion is provided. Additionally, a cybersecurity-related corpus is described and published within this work.
Yermalovich, P., Mejri, M..  2020.  Information security risk assessment based on decomposition probability via Bayesian Network. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1–8.
Well-known approaches to risk analysis suggest considering the level of an information system risk as one frame in a film. This means that we only can perform a risk assessment for the current point in time. This article explores the idea of risk assessment in a future period, as a prediction of what we will see in the film later. In other words, the article presents an approach to predicting a potential future risk and suggests the idea of relying on forecasting the likelihood of an attack on information system assets. To establish the risk level at a selected time interval in the future, one has to perform a mathematical decomposition. To do this, we need to select the required information system parameters for the predictions and their statistical data for risk assessment. This method can be used to ensure more detailed budget planning when ensuring the protection of the information system. It can be also applied in case of a change of the information protection configuration to satisfy the accepted level of risk associated with projected threats and vulnerabilities.
2021-04-09
Lyshevski, S. E., Aved, A., Morrone, P..  2020.  Information-Centric Cyberattack Analysis and Spatiotemporal Networks Applied to Cyber-Physical Systems. 2020 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW). 1:172—177.

Cyber-physical systems (CPS) depend on cybersecurity to ensure functionality, data quality, cyberattack resilience, etc. There are known and unknown cyber threats and attacks that pose significant risks. Information assurance and information security are critical. Many systems are vulnerable to intelligence exploitation and cyberattacks. By investigating cybersecurity risks and formal representation of CPS using spatiotemporal dynamic graphs and networks, this paper investigates topics and solutions aimed to examine and empower: (1) Cybersecurity capabilities; (2) Information assurance and system vulnerabilities; (3) Detection of cyber threat and attacks; (4) Situational awareness; etc. We introduce statistically-characterized dynamic graphs, novel entropy-centric algorithms and calculi which promise to ensure near-real-time capabilities.

2021-03-30
Abbas, H., Suguri, H., Yan, Z., Allen, W., Hei, X. S..  2020.  IEEE Access Special Section: Security Analytics and Intelligence for Cyber Physical Systems. IEEE Access. 8:208195—208198.

A Cyber Physical System (CPS) is a smart network system with actuators, embedded sensors, and processors to interact with the physical world by guaranteeing the performance and supporting real-time operations of safety critical applications. These systems drive innovation and are a source of competitive advantage in today’s challenging world. By observing the behavior of physical processes and activating actions, CPS can alter its behavior to make the physical environment perform better and more accurately. By definition, CPS basically has two major components including cyber systems and physical processes. Examples of CPS include autonomous transportation systems, robotics systems, medical monitoring, automatic pilot avionics, and smart grids. Advances in CPS will empower scalability, capability, usability, and adaptability, which will go beyond the simple systems of today. At the same time, CPS has also increased cybersecurity risks and attack surfaces. Cyber attackers can harm such systems from multiple sources while hiding their identities. As a result of sophisticated threat matrices, insufficient knowledge about threat patterns, and industrial network automation, CPS has become extremely insecure. Since such infrastructure is networked, attacks can be prompted easily without much human participation from remote locations, thereby making CPS more vulnerable to sophisticated cyber-attacks. In turn, large-scale data centers managing a huge volume of CPS data become vulnerable to cyber-attacks. To secure CPS, the role of security analytics and intelligence is significant. It brings together huge amounts of data to create threat patterns, which can be used to prevent cyber-attacks in a timely fashion. The primary objective of this Special Section in IEEE A CCESS is to collect a complementary and diverse set of articles, which demonstrate up-to-date information and innovative developments in the domain of security analytics and intelligence for CPS.

Baybulatov, A. A., Promyslov, V. G..  2020.  On a Deterministic Approach to Solving Industrial Control System Problems. 2020 International Russian Automation Conference (RusAutoCon). :115—120.

Since remote ages, queues and delays have been a rather exasperating reality of human daily life. Today, they pursue us everywhere: in technical, social, socio-technical, and even control systems, dramatically deteriorating their performance. In this variety, it is the computer systems that are sure to cause the growing anxiety in our digital era. Although for our everyday Internet surfing, experiencing long-lasting and annoying delays is an unpleasant but not dangerous situation, for industrial control systems, especially those dealing with critical infrastructures, such behavior is unacceptable. The article presents a deterministic approach to solving some digital control system problems associated with delays and backlogs. Being based on Network calculus, in contrast to statistical methods of Queuing theory, it provides worst-case results, which are eminently desirable for critical infrastructures. The article covers the basics of a theory of deterministic queuing systems Network calculus, its evolution regarding the relationship between backlog bound and delay, and a technique for handling empirical data. The problems being solved by the deterministic approach: standard calculation of network performance measures, estimation of database maximum updating time, and cybersecurity assessment including such issues as the CIA triad representation, operational technology influence, and availability understanding focusing on its correlation with a delay are thoroughly discussed as well.

Khan, W. Z., Arshad, Q.-u-A., Hakak, S., Khan, M. K., Saeed-Ur-Rehman.  2020.  Trust Management in Social Internet of Things: Architectures, Recent Advancements and Future Challenges. IEEE Internet of Things Journal. :1—1.

Social Internet of Things (SIoT) is an extension of Internet of Things (IoT) that converges with Social networking concepts to create Social networks of interconnected smart objects. This convergence allows the enrichment of the two paradigms, resulting into new ecosystems. While IoT follows two interaction paradigms, human-to-human (H2H) and thing-to-thing (T2T), SIoT adds on human-to-thing (H2T) interactions. SIoT enables smart “Social objects” that intelligently mimic the social behavior of human in the daily life. These social objects are equipped with social functionalities capable of discovering other social objects in the surroundings and establishing social relationships. They crawl through the social network of objects for the sake of searching for services and information of interest. The notion of trust and trustworthiness in social communities formed in SIoT is still new and in an early stage of investigation. In this paper, our contributions are threefold. First, we present the fundamentals of SIoT and trust concepts in SIoT, clarifying the similarities and differences between IoT and SIoT. Second, we categorize the trust management solutions proposed so far in the literature for SIoT over the last six years and provide a comprehensive review. We then perform a comparison of the state of the art trust management schemes devised for SIoT by performing comparative analysis in terms of trust management process. Third, we identify and discuss the challenges and requirements in the emerging new wave of SIoT, and also highlight the challenges in developing trust and evaluating trustworthiness among the interacting social objects.