Biblio
Smart mobile devices such as smartphones and tablets have become an integral part of our society. However, it also becomes a prime target for attackers with malicious intents. There have been a number of efforts on developing innovative courseware to promote cybersecurity education and to improve student learning; however, hands-on labs are not well developed for smart mobile devices and for mobile security topics. In this paper, we propose to design and develop a mobile security labware with smart mobile devices to promote the cybersecurity education. The integration of mobile computing technologies and smart devices into cybersecurity education will connect the education to leading-edge information technologies, motivate and engage students in security learning, fill in the gap with IT industry need, and help faculties build expertise on mobile computing. In addition, the hands-on experience with mobile app development will promote student learning and supply them with a better understanding of security knowledge not only in classical security domains but also in the emerging mobile security areas.
Machine learning (ML) techniques are changing both the offensive and defensive aspects of cybersecurity. The implications are especially strong for privacy, as ML approaches provide unprecedented opportunities to make use of collected data. Thus, education on cybersecurity and AI is needed. To investigate how AI and cybersecurity should be taught together, we look at previous studies on cybersecurity MOOCs by conducting a systematic literature review. The initial search resulted in 72 items and after screening for only peer-reviewed publications on cybersecurity online courses, 15 studies remained. Three of the studies concerned multiple cybersecurity MOOCs whereas 12 focused on individual courses. The number of published work evaluating specific cybersecurity MOOCs was found to be small compared to all available cybersecurity MOOCs. Analysis of the studies revealed that cybersecurity education is, in almost all cases, organised based on the topic instead of used tools, making it difficult for learners to find focused information on AI applications in cybersecurity. Furthermore, there is a gab in academic literature on how AI applications in cybersecurity should be taught in online courses.
Nowadays, private corporations and public institutions are dealing with constant and sophisticated cyberthreats and cyberattacks. As a general warning, organizations must build and develop a cybersecurity culture and awareness in order to defend against cybercriminals. Information Technology (IT) and Information Security (InfoSec) audits that were efficient in the past, are trying to converge into cybersecurity audits to address cyber threats, cyber risks and cyberattacks that evolve in an aggressive cyber landscape. However, the increase in number and complexity of cyberattacks and the convoluted cyberthreat landscape is challenging the running cybersecurity audit models and putting in evidence the critical need for a new cybersecurity audit model. This article reviews the best practices and methodologies of global leaders in the cybersecurity assurance and audit arena. By means of the analysis of the current approaches and theoretical background, their real scope, strengths and weaknesses are highlighted looking forward a most efficient and cohesive synthesis. As a resut, this article presents an original and comprehensive cybersecurity audit model as a proposal to be utilized for conducting cybersecurity audits in organizations and Nation States. The CyberSecurity Audit Model (CSAM) evaluates and validates audit, preventive, forensic and detective controls for all organizational functional areas. CSAM has been tested, implemented and validated along with the Cybersecurity Awareness TRAining Model (CATRAM) in a Canadian higher education institution. A research case study is being conducted to validate both models and the findings will be published accordingly.
The purpose of this paper is threefold. First, it makes the case for incorporating cybersecurity principles into undergraduate Engineering Technology Education and for incorporating Industrial Control Systems (ICS) principles into undergraduate Information Technology (IT)/Cybersecurity Education. Specifically, the paper highlights the knowledge/skill gap between engineers and IT/Cybersecurity professionals with respect to the cybersecurity of the ICS. Secondly, it identifies several areas where traditional IT systems and ICS intercept. This interception not only implies that ICS are susceptible to the same cyber threats as traditional IT/IS but also to threats that are unique to ICS. Subsequently, the paper identifies several areas where cybersecurity principles can be applied to ICS. By incorporating cybersecurity principles into Engineering Technology Education, the paper hopes to provide IT/Cybersecurity and Engineering Students with (a) the theoretical knowledge of the cybersecurity issues associated with administering and operating ICS and (b) the applied technical skills necessary to manage and mitigate the cyber risks against these systems. Overall, the paper holds the promise of contributing to the ongoing effort aimed at bridging the knowledge/skill gap with respect to securing ICS against cyber threats and attacks.
Cybersecurity of the supervisory control and data acquisition (SCADA) system, which is the key component of the cyber-physical systems (CPS), is facing big challenges and will affect the reliability of the smart grid. System reliability can be influenced by various cyber threats. In this paper, the reliability of the electric power system considering different cybersecurity issues in the SCADA system is analyzed by using Semi-Markov Process (SMP) and mean time-to-compromise (MTTC). External and insider attacks against the SCADA system are investigated with the SMP models and the results are compared. The system reliability is evaluated by reliability indexes including loss of load probability (LOLP) and expected energy not supplied (EENS) through Monte Carlo Simulations (MCS). The lurking threats of the cyberattacks are also analyzed in the study. Case studies were conducted on the IEEE Reliability Test System (RTS-96). The results show that with the increase of the MTTCs of the cyberattacks, the LOLP values decrease. When insider attacks are considered, both the LOLP and EENS values dramatically increase owing to the decreased MTTCs. The results provide insights into the establishment of the electric power system reliability enhancement strategies.
Machine learning algorithms used to detect attacks are limited by the fact that they cannot incorporate the back-ground knowledge that an analyst has. This limits their suitability in detecting new attacks. Reinforcement learning is different from traditional machine learning algorithms used in the cybersecurity domain. Compared to traditional ML algorithms, reinforcement learning does not need a mapping of the input-output space or a specific user-defined metric to compare data points. This is important for the cybersecurity domain, especially for malware detection and mitigation, as not all problems have a single, known, correct answer. Often, security researchers have to resort to guided trial and error to understand the presence of a malware and mitigate it.In this paper, we incorporate prior knowledge, represented as Cybersecurity Knowledge Graphs (CKGs), to guide the exploration of an RL algorithm to detect malware. CKGs capture semantic relationships between cyber-entities, including that mined from open source. Instead of trying out random guesses and observing the change in the environment, we aim to take the help of verified knowledge about cyber-attack to guide our reinforcement learning algorithm to effectively identify ways to detect the presence of malicious filenames so that they can be deleted to mitigate a cyber-attack. We show that such a guided system outperforms a base RL system in detecting malware.
The growth of IoT devices during the last decade has led to the development of smart ecosystems, such as smart homes, prone to cyberattacks. Traditional security methodologies support to some extend the requirement for preserving privacy and security of such deployments, but their centralized nature in conjunction with low computational capabilities of smart home gateways make such approaches not efficient. Last achievements on blockchain technologies allowed the use of such decentralized architectures to support cybersecurity defence mechanisms. In this work, a blockchain framework is presented to support the cybersecurity mechanisms of smart homes installations, focusing on the immutability of users and devices that constitute such environments. The proposed methodology provides also the appropriate smart contracts support for ensuring the integrity of the smart home gateway and IoT devices, as well as the dynamic and immutable management of blocked malicious IPs. The framework has been deployed on a real smart home environment demonstrating its applicability and efficiency.
Cyber-physical systems (CPS) depend on cybersecurity to ensure functionality, data quality, cyberattack resilience, etc. There are known and unknown cyber threats and attacks that pose significant risks. Information assurance and information security are critical. Many systems are vulnerable to intelligence exploitation and cyberattacks. By investigating cybersecurity risks and formal representation of CPS using spatiotemporal dynamic graphs and networks, this paper investigates topics and solutions aimed to examine and empower: (1) Cybersecurity capabilities; (2) Information assurance and system vulnerabilities; (3) Detection of cyber threat and attacks; (4) Situational awareness; etc. We introduce statistically-characterized dynamic graphs, novel entropy-centric algorithms and calculi which promise to ensure near-real-time capabilities.
A Cyber Physical System (CPS) is a smart network system with actuators, embedded sensors, and processors to interact with the physical world by guaranteeing the performance and supporting real-time operations of safety critical applications. These systems drive innovation and are a source of competitive advantage in today’s challenging world. By observing the behavior of physical processes and activating actions, CPS can alter its behavior to make the physical environment perform better and more accurately. By definition, CPS basically has two major components including cyber systems and physical processes. Examples of CPS include autonomous transportation systems, robotics systems, medical monitoring, automatic pilot avionics, and smart grids. Advances in CPS will empower scalability, capability, usability, and adaptability, which will go beyond the simple systems of today. At the same time, CPS has also increased cybersecurity risks and attack surfaces. Cyber attackers can harm such systems from multiple sources while hiding their identities. As a result of sophisticated threat matrices, insufficient knowledge about threat patterns, and industrial network automation, CPS has become extremely insecure. Since such infrastructure is networked, attacks can be prompted easily without much human participation from remote locations, thereby making CPS more vulnerable to sophisticated cyber-attacks. In turn, large-scale data centers managing a huge volume of CPS data become vulnerable to cyber-attacks. To secure CPS, the role of security analytics and intelligence is significant. It brings together huge amounts of data to create threat patterns, which can be used to prevent cyber-attacks in a timely fashion. The primary objective of this Special Section in IEEE A CCESS is to collect a complementary and diverse set of articles, which demonstrate up-to-date information and innovative developments in the domain of security analytics and intelligence for CPS.
Since remote ages, queues and delays have been a rather exasperating reality of human daily life. Today, they pursue us everywhere: in technical, social, socio-technical, and even control systems, dramatically deteriorating their performance. In this variety, it is the computer systems that are sure to cause the growing anxiety in our digital era. Although for our everyday Internet surfing, experiencing long-lasting and annoying delays is an unpleasant but not dangerous situation, for industrial control systems, especially those dealing with critical infrastructures, such behavior is unacceptable. The article presents a deterministic approach to solving some digital control system problems associated with delays and backlogs. Being based on Network calculus, in contrast to statistical methods of Queuing theory, it provides worst-case results, which are eminently desirable for critical infrastructures. The article covers the basics of a theory of deterministic queuing systems Network calculus, its evolution regarding the relationship between backlog bound and delay, and a technique for handling empirical data. The problems being solved by the deterministic approach: standard calculation of network performance measures, estimation of database maximum updating time, and cybersecurity assessment including such issues as the CIA triad representation, operational technology influence, and availability understanding focusing on its correlation with a delay are thoroughly discussed as well.
Social Internet of Things (SIoT) is an extension of Internet of Things (IoT) that converges with Social networking concepts to create Social networks of interconnected smart objects. This convergence allows the enrichment of the two paradigms, resulting into new ecosystems. While IoT follows two interaction paradigms, human-to-human (H2H) and thing-to-thing (T2T), SIoT adds on human-to-thing (H2T) interactions. SIoT enables smart “Social objects” that intelligently mimic the social behavior of human in the daily life. These social objects are equipped with social functionalities capable of discovering other social objects in the surroundings and establishing social relationships. They crawl through the social network of objects for the sake of searching for services and information of interest. The notion of trust and trustworthiness in social communities formed in SIoT is still new and in an early stage of investigation. In this paper, our contributions are threefold. First, we present the fundamentals of SIoT and trust concepts in SIoT, clarifying the similarities and differences between IoT and SIoT. Second, we categorize the trust management solutions proposed so far in the literature for SIoT over the last six years and provide a comprehensive review. We then perform a comparison of the state of the art trust management schemes devised for SIoT by performing comparative analysis in terms of trust management process. Third, we identify and discuss the challenges and requirements in the emerging new wave of SIoT, and also highlight the challenges in developing trust and evaluating trustworthiness among the interacting social objects.