Biblio
The majority of business activity of our integrated and connected world takes place in networks based on cloud computing infrastructure that cross national, geographic and jurisdictional boundaries. Such an efficient entity interconnection is made possible through an emerging networking paradigm, Software Defined Networking (SDN) that intends to vastly simplify policy enforcement and network reconfiguration in a dynamic manner. However, despite the obvious advantages this novel networking paradigm introduces, its increased attack surface compared to traditional networking deployments proved to be a thorny issue that creates skepticism when safety-critical applications are considered. Especially when SDN is used to support Internet-of-Things (IoT)-related networking elements, additional security concerns rise, due to the elevated vulnerability of such deployments to specific types of attacks and the necessity of inter-cloud communication any IoT application would require. The overall number of connected nodes makes the efficient monitoring of all entities a real challenge, that must be tackled to prevent system degradation and service outage. This position paper provides an overview of common security issues of SDN when linked to IoT clouds, describes the design principals of the recently introduced Blockchain paradigm and advocates the reasons that render Blockchain as a significant security factor for solutions where SDN and IoT are involved.
In the age of IOT, as more and more devices are getting connected to the internet through wireless networks, a better security infrastructure is required to protect these devices from massive attacks. For long SSIDs and passwords have been used to authenticate and secure Wi-Fi networks. But the SSID and password combination is vulnerable to security exploits like phishing and brute-forcing. In this paper, a completely automated Wi-Fi authentication system is proposed, that generates Time-based One-Time Passwords (TOTP) to secure Wi-Fi networks. This approach aims to black box the process of connecting to a Wi-Fi network for the user and the process of generating periodic secure passwords for the network without human intervention.
User attribution process based on human inherent dynamics and preference is one area of research that is capable of elucidating and capturing human dynamics on the Internet. Prior works on user attribution concentrated on behavioral biometrics, 1-to-1 user identification process without consideration for individual preference and human inherent temporal tendencies, which is capable of providing a discriminatory baseline for online users, as well as providing a higher level classification framework for novel user attribution. To address these limitations, the study developed a temporal model, which comprises the human Polyphasia tendency based on Polychronic-Monochronic tendency scale measurement instrument and the extraction of unique human-centric features from server-side network traffic of 48 active users. Several machine-learning algorithms were applied to observe distinct pattern among the classes of the Polyphasia tendency, through which a logistic model tree was observed to provide higher classification accuracy for a 1-to-N user attribution process. The study further developed a high-level attribution model for higher-level user attribution process. The result from this study is relevant in online profiling process, forensic identification and profiling process, e-learning profiling process as well as in social network profiling process.
The concept of Extension Headers, newly introduced with IPv6, is elusive and enables new types of threats in the Internet. Simply dropping all traffic containing any Extension Header - a current practice by operators-seemingly is an effective solution, but at the cost of possibly dropping legitimate traffic as well. To determine whether threats indeed occur, and evaluate the actual nature of the traffic, measurement solutions need to be adapted. By implementing these specific parsing capabilities in flow exporters and performing measurements on two different production networks, we show it is feasible to quantify the metrics directly related to these threats, and thus allow for monitoring and detection. Analysing the traffic that is hidden behind Extension Headers, we find mostly benign traffic that directly affects end-user QoE: simply dropping all traffic containing Extension Headers is thus a bad practice with more consequences than operators might be aware of.
Mobility and multihoming have become the norm in Internet access, e.g. smartphones with Wi-Fi and LTE, and connected vehicles with LTE and DSRC links that change rapidly. Mobility creates challenges for active session continuity when provider-aggregatable locators are used, while multihoming brings opportunities for improving resiliency and allocative efficiency. This paper proposes a novel migration protocol, in the context of the eXpressive Internet Architecture (XIA), the XIA Migration Protocol. We compare it with Mobile IPv6, with respect to handoff latency and overhead, flow migration support, and defense against spoofing and replay of protocol messages. Handoff latencies of the XIA Migration Protocol and Mobile IPv6 Enhanced Route Optimization are comparable and neither protocol opens up avenues for spoofing or replay attacks. However, XIA requires no mobility anchor point to support client mobility while Mobile IPv6 always depends on a home agent. We show that XIA has significant advantage over IPv6 for multihomed hosts and networks in terms of resiliency, scalability, load balancing and allocative efficiency. IPv6 multihoming solutions either forgo scalability (BGP-based) or sacrifice resiliency (NAT-based), while XIA's fallback-based multihoming provides fault tolerance without a heavy-weight protocol. XIA also allows fine-grained incoming load-balancing and QoS-matching by supporting flow migration. Flow migration is not possible using Mobile IPv6 when a single IPv6 address is associated with multiple flows. From a protocol design and architectural perspective, the key enablers of these benefits are flow-level migration, XIA's DAG-based locators and self-certifying identifiers.
The Department of Homeland Security Cyber Security Division (CSD) chose Moving Target Defense as one of the fourteen primary Technical Topic Areas pertinent to securing federal networks and the larger Internet. Moving Target Defense over IPv6 (MT6D) employs an obscuration technique offering keyed access to hosts at a network level without altering existing network infrastructure. This is accomplished through cryptographic dynamic addressing, whereby a new network address is bound to an interface every few seconds in a coordinated manner. The goal of this research is to produce a Register Transfer Level (RTL) network security processor implementation to enable the production of an Application Specific Integrated Circuit (ASIC) variant of MT6D processor for wide deployment. RTL development is challenging in that it must provide system level functions that are normally provided by the Operating System's kernel and supported libraries. This paper presents the architectural design of a hardware engine for MT6D (HE-MT6D) and is complete in simulation. Unique contributions are an inline stream-based network packet processor with a Complex Instruction Set Computer (CISC) architecture, Network Time Protocol listener, and theoretical increased performance over previous software implementations.
The article issue is the enterprise information protection within the internet of things concept. The aim of research is to develop arrangements set to ensure secure enterprise IPv6 network operating. The object of research is the enterprise IPv6 network. The subject of research is modern switching equipment as a tool to ensure network protection. The research task is to prioritize functioning of switches in production and corporation enterprise networks, to develop a network host protection algorithm, to test the developed algorithm on the Cisco Packet Tracer 7 software emulator. The result of research is the proposed approach to IPv6-network security based on analysis of modern switches functionality, developed and tested enterprise network host protection algorithm under IPv6-protocol with an automated network SLAAC-configuration control, a set of arrangements for resisting default enterprise gateway attacks, using ACL, VLAN, SEND, RA Guard security technology, which allows creating sufficiently high level of networks security.
With the rapid application of the network based communication in industries, the security related problems appear to be inevitable for automation networks. The integration of internet into the automation plant benefited companies and engineers a lot and on the other side paved ways to number of threats. An attack on such control critical infrastructure may endangers people's health and safety, damage industrial facilities and produce financial loss. One of the approach to secure the network in automation is the development of an efficient Network based Intrusion Detection System (NIDS). Despite several techniques available for intrusion detection, they still lag in identifying the possible attacks or novel attacks on network efficiently. In this paper, we evaluate the performance of detection mechanism by combining the deep learning techniques with the machine learning techniques for the development of Intrusion Detection System (IDS). The performance metrics such as precession, recall and F-Measure were measured.
The vision of cyber-physical systems (CPSs) considered the Internet as the future communication network for such systems. A challenge with this regard is to provide high communication reliability, especially, for CPSs applications in critical infrastructures. Examples include smart grid applications with reliability requirements between 99-99.9999% [2]. Even though the Internet is a cost effective solution for such applications, the reliability of its end-to-end (e2e) paths is inadequate (often less than 99%). In this paper, we propose Reliable Multipath Communication Approach for Internet-based CPSs (RC4CPS). RC4CPS is an e2e approach that utilizes the inherent redundancy of the Internet and multipath (MP) transport protocols concept to improve reliability measured in terms of availability. It provides online monitoring and MP selection in order to fulfill the application specific reliability requirement. In addition, our MP selection considers e2e paths dependency and unavailability prediction to maximize the reliability gains of MP communication. Our results show that RC4CPS dynamic MP selection satisfied the reliability requirement along with selecting e2e paths with low dependency and unavailability probability.
Software Defined Networks (SDNs) is a new networking paradigm that has gained a lot of attention in recent years especially in implementing data center networks and in providing efficient security solutions. The popularity of SDN and its attractive security features suggest that it can be used in the context of smart grid systems to address many of the vulnerabilities and security problems facing such critical infrastructure systems. This paper studies the impact of different cyber attacks that can target smart grid communication network which is implemented as a software defined network on the operation of the smart grid system in general. In particular, we perform different attack scenarios including DDoS attacks, location highjacking and link overloading against SDN networks of different controller types that include POX, Floodlight and RYU. Our experiments were carried out using the mininet simulator. The experiments show that SDN-enabled smartgrid systems are vulnerable to different types of attacks.
In the last years, networking scenarios have been evolving, hand-in-hand with new and varied applications with heterogeneous Quality of Service (QoS) requirements. These requirements must be efficiently and effectively delivered. Given its static layered structure and almost complete lack of built-in QoS support, the current TCP/IP-based Internet hinders such an evolution. In contrast, the clean-slate Recursive InterNetwork Architecture (RINA) proposes a new recursive and programmable networking model capable of evolving with the network requirements, solving in this way most, if not all, TCP/IP protocol stack limitations. Network providers can better deliver communication services across their networks by taking advantage of the RINA architecture and its support for QoS. This support allows providing complete information of the QoS needs of the supported traffic flows, and thus, fulfilment of these needs becomes possible. In this work, we focus on the importance of path selection to better ensure QoS guarantees in long-haul RINA networks. We propose and evaluate a programmable strategy for path selection based on flow QoS parameters, such as the maximum allowed latency and packet losses, comparing its performance against simple shortest-path, fastest-path and connection-oriented solutions.
Named Data Networking (NDN) is one of the future internet architectures, which is a clean-slate approach. NDN provides intelligent data retrieval using the principles of name-based symmetrical forwarding of Interest/Data packets and innetwork caching. The continually increasing demand for rapid dissemination of large-scale scientific data is driving the use of NDN in data-intensive science experiments. In this paper, we establish an intercontinental NDN testbed. In the testbed, an NDN-based application that targets climate science as an example data intensive science application is designed and implemented, which has differentiated features compared to those of previous studies. We verify experimental justification of using NDN for climate science in the intercontinental network, through performance comparisons between classical delivery techniques and NDN-based climate data delivery.
Named Data Networks provide a clean-slate redesign of the Future Internet for efficient content distribution. Because Internet of Things are expected to compose a significant part of Future Internet, most content will be managed by constrained devices. Such devices are often equipped with limited CPU, memory, bandwidth, and energy supply. However, the current Named Data Networks design neglects the specific requirements of Internet of Things scenarios and many data structures need to be further optimized. The purpose of this research is to provide an efficient strategy to route in Named Data Networks by constructing a Forwarding Information Base using Iterated Bloom Filters defined as I(FIB)F. We propose the use of content names based on iterative hashes. This strategy leads to reduce the overhead of packets. Moreover, the memory and the complexity required in the forwarding strategy are lower than in current solutions. We compare our proposal with solutions based on hierarchical names and Standard Bloom Filters. We show how to further optimize I(FIB)F by exploiting the structure information contained in hierarchical content names. Finally, two strategies may be followed to reduce: (i) the overall memory for routing or (ii) the probability of false positives.
The Named-Data Networking (NDN) has emerged as a clean-slate Internet proposal on the wave of Information-Centric Networking. Although the NDN's data-plane seems to offer many advantages, e.g., native support for multicast communications and flow balance, it also makes the network infrastructure vulnerable to a specific DDoS attack, the Interest Flooding Attack (IFA). In IFAs, a botnet issuing unsatisfiable content requests can be set up effortlessly to exhaust routers' resources and cause a severe performance drop to legitimate users. So far several countermeasures have addressed this security threat, however, their efficacy was proved by means of simplistic assumptions on the attack model. Therefore, we propose a more complete attack model and design an advanced IFA. We show the efficiency of our novel attack scheme by extensively assessing some of the state-of-the-art countermeasures. Further, we release the software to perform this attack as open source tool to help design future more robust defense mechanisms.
Opportunistic Networks are delay-tolerant mobile networks with intermittent node contacts in which data is transferred with the store-carry-forward principle. Owners of smartphones and smart objects form such networks due to their social behaviour. Opportunistic Networking can be used in remote areas with no access to the Internet, to establish communication after disasters, in emergency situations or to bypass censorship, but also in parallel to familiar networking. In this work, we create a mobile network application that connects Android devices over Wi-Fi, offers identification and encryption, and gathers information for routing in the network. The network application is constructed in such a way that third party applications can use the network application as network layer to send and receive data packets. We create secure and reliable connections while maintaining a high transmission speed, and with the gathered information about the network we offer knowledge for state of the art routing protocols. We conduct tests on connectivity, transmission range and speed, battery life and encryption speed and show a proof of concept for routing in the network.
Often considered as the brain of an industrial process, Industrial control systems are presented as the vital part of today's critical infrastructure due to their crucial role in process control and monitoring. Any failure or error in the system will have a considerable damage. Their openness to the internet world raises the risk related to cyber-attacks. Therefore, it's necessary to consider cyber security challenges while designing an ICS in order to provide security services such as authentication, integrity, access control and secure communication channels. To implement such services, it's necessary to provide an efficient key management system (KMS) as an infrastructure for all cryptographic operations, while preserving the functional characteristics of ICS. In this paper we will analyze existing KMS and their suitability for ICS, then we propose a new KMS based on Identity Based Cryptography (IBC) as a better alternative to traditional KMS. In our proposal, we consider solving two security problems in IBC which brings it up to be more suitable for ICS.
In Energy Internet mode, a large number of alarm information is generated when equipment exception and multiple faults in large power grid, which seriously affects the information collection, fault analysis and delays the accident treatment for the monitors. To this point, this paper proposed a method for power grid monitoring to monitor and diagnose fault in real time, constructed the equipment fault logical model based on five section alarm information, built the standard fault information set, realized fault information optimization, fault equipment location, fault type diagnosis, false-report message and missing-report message analysis using matching algorithm. The validity and practicality of the proposed method by an actual case was verified, which can shorten the time of obtaining and analyzing fault information, accelerate the progress of accident treatment, ensure the safe and stable operation of power grid.
The Web today is a growing universe of pages and applications teeming with interactive content. The security of such applications is of the utmost importance, as exploits can have a devastating impact on personal and economic levels. The number one programming language in Web applications is PHP, powering more than 80% of the top ten million websites. Yet it was not designed with security in mind and, today, bears a patchwork of fixes and inconsistently designed functions with often unexpected and hardly predictable behavior that typically yield a large attack surface. Consequently, it is prone to different types of vulnerabilities, such as SQL Injection or Cross-Site Scripting. In this paper, we present an interprocedural analysis technique for PHP applications based on code property graphs that scales well to large amounts of code and is highly adaptable in its nature. We implement our prototype using the latest features of PHP 7, leverage an efficient graph database to store code property graphs for PHP, and subsequently identify different types of Web application vulnerabilities by means of programmable graph traversals. We show the efficacy and the scalability of our approach by reporting on an analysis of 1,854 popular open-source projects, comprising almost 80 million lines of code.
Web Application becomes the leading solution for the utilization of systems that need access globally, distributed, cost-effective, as well as the diversity of the content that can run on this technology. At the same time web application security have always been a major issue that must be considered due to the fact that 60% of Internet attacks targeting web application platform. One of the biggest impacts on this technology is Cross Site Scripting (XSS) attack, the most frequently occurred and are always in the TOP 10 list of Open Web Application Security Project (OWASP). Vulnerabilities in this attack occur in the absence of checking, testing, and the attention about secure coding practices. There are several alternatives to prevent the attacks that associated with this threat. Network Intrusion Detection System can be used as one solution to prevent the influence of XSS Attack. This paper investigates the XSS attack recognition and detection using regular expression pattern matching and a preprocessing method. Experiments are conducted on a testbed with the aim to reveal the behaviour of the attack.
In recent years, with the advances in JavaScript engines and the adoption of HTML5 APIs, web applications begin to show a tendency to shift their functionality from the server side towards the client side, resulting in dense and complex interactions with HTML documents using the Document Object Model (DOM). As a consequence, client-side vulnerabilities become more and more prevalent. In this paper, we focus on DOM-sourced Cross-site Scripting (XSS), which is a kind of severe but not well-studied vulnerability appearing in browser extensions. Comparing with conventional DOM-based XSS, a new attack surface is introduced by DOM-sourced XSS where the DOM could become a vulnerable source as well besides common sources such as URLs and form inputs. To discover such vulnerability, we propose a detecting framework employing hybrid analysis with two phases. The first phase is the lightweight static analysis consisting of a text filter and an abstract syntax tree parser, which produces potential vulnerable candidates. The second phase is the dynamic symbolic execution with an additional component named shadow DOM, generating a document as a proof-of-concept exploit. In our large-scale real-world experiment, 58 previously unknown DOM-sourced XSS vulnerabilities were discovered in user scripts of the popular browser extension Greasemonkey.
As the most successful cryptocurrency to date, Bitcoin constitutes a target of choice for attackers. While many attack vectors have already been uncovered, one important vector has been left out though: attacking the currency via the Internet routing infrastructure itself. Indeed, by manipulating routing advertisements (BGP hijacks) or by naturally intercepting traffic, Autonomous Systems (ASes) can intercept and manipulate a large fraction of Bitcoin traffic. This paper presents the first taxonomy of routing attacks and their impact on Bitcoin, considering both small-scale attacks, targeting individual nodes, and large-scale attacks, targeting the network as a whole. While challenging, we show that two key properties make routing attacks practical: (i) the efficiency of routing manipulation; and (ii) the significant centralization of Bitcoin in terms of mining and routing. Specifically, we find that any network attacker can hijack few (\textbackslashtextless;100) BGP prefixes to isolate 50% of the mining power-even when considering that mining pools are heavily multi-homed. We also show that on-path network attackers can considerably slow down block propagation by interfering with few key Bitcoin messages. We demonstrate the feasibility of each attack against the deployed Bitcoin software. We also quantify their effectiveness on the current Bitcoin topology using data collected from a Bitcoin supernode combined with BGP routing data. The potential damage to Bitcoin is worrying. By isolating parts of the network or delaying block propagation, attackers can cause a significant amount of mining power to be wasted, leading to revenue losses and enabling a wide range of exploits such as double spending. To prevent such effects in practice, we provide both short and long-term countermeasures, some of which can be deployed immediately.
Used by both information systems designers and security personnel, the Attack Tree method provides a graphical analysis of the ways in which an entity (a computer system or network, an entire organization, etc.) can be attacked and indicates the countermeasures that can be taken to prevent the attackers to reach their objective. In this paper, we built an Attack Tree focused on the goal “compromising the security of a Web platform”, considering the most common vulnerabilities of the WordPress platform identified by CVE (Common Vulnerabilities and Exposures), a global reference system for recording information regarding computer security threats. Finally, based on the likelihood of the attacks, we made a quantitative analysis of the probability that the security of the Web platform can be compromised.
Cyber attacks, (e.g., DDoS), on computers connected to the Internet occur everyday. A DDoS attack in 2016 that used “Mirai botnet” generated over 600 Gbit/s traffic, which was twice as that of last year. In view of this situation, we can no longer adequately protect our computers using current end-point security solutions and must therefore introduce a new method of protection that uses distributed nodes, e.g., routers. We propose an Autonomous and Distributed Internet Security (AIS) infrastructure that provides two key functions: first, filtering source address spoofing packets (proactive filter), and second, filtering malicious packets that are observed at the end point (reactive filter) at the closest malicious packets origins. We also propose three types of Multi-Layer Binding Routers (MLBRs) to realize these functions. We implemented the MLBRs and constructed experimental systems to simulate DDoS attacks. Results showed that all malicious packets could be filtered by using the AIS infrastructure.