Visible to the public Biblio

Found 1474 results

Filters: First Letter Of Title is D  [Clear All Filters]
2023-07-21
Su, Xiangjing, Zhu, Zheng, Xiao, Shiqu, Fu, Yang, Wu, Yi.  2022.  Deep Neural Network Based Efficient Data Fusion Model for False Data Detection in Power System. 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2). :1462—1466.
Cyberattack on power system brings new challenges on the development of modern power system. Hackers may implement false data injection attack (FDIA) to cause unstable operating conditions of the power system. However, data from different power internet of things usually contains a lot of redundancy, making it difficult for current efficient discriminant model to precisely identify FDIA. To address this problem, we propose a deep learning network-based data fusion model to handle features from measurement data in power system. Proposed model includes a data enrichment module and a data fusion module. We firstly employ feature engineering technique to enrich features from power system operation in time dimension. Subsequently, a long short-term memory based autoencoder (LSTM-AE) is designed to efficiently avoid feature space explosion problem during data enriching process. Extensive experiments are performed on several classical attack detection models over the load data set from IEEE 14-bus system and simulation results demonstrate that fused data from proposed model shows higher detection accuracy with respect to the raw data.
Dabush, Lital, Routtenberg, Tirza.  2022.  Detection of False Data Injection Attacks in Unobservable Power Systems by Laplacian Regularization. 2022 IEEE 12th Sensor Array and Multichannel Signal Processing Workshop (SAM). :415—419.
The modern electrical grid is a complex cyber-physical system, and thus is vulnerable to measurement losses and attacks. In this paper, we consider the problem of detecting false data injection (FDI) attacks and bad data in unobservable power systems. Classical bad-data detection methods usually assume observable systems and cannot detect stealth FDI attacks. We use the smoothness property of the system states (voltages) w.r.t. the admittance matrix, which is also the Laplacian of the graph representation of the grid. First, we present the Laplacian-based regularized state estimator, which does not require full observability of the network. Then, we derive the Laplacian-regularized generalized likelihood ratio test (LR-GLRT). We show that the LR-GLRT has a component of a soft high-pass graph filter applied to the state estimator. Numerical results on the IEEE 118-bus system demonstrate that the LR-GLRT outperforms other detection approaches and is robust to missing data.
Manjula, P., Baghavathi Priya, S..  2022.  Detection of Falsified Selfish Node with Optimized Trust Computation Model In Chimp -AODV Based WSN. 2022 International Conference on Electronic Systems and Intelligent Computing (ICESIC). :52—57.
In Wireless Sensor Networks (WSNs), energy and security are two critical concerns that must be addressed. Because of the scarcity of energy, several security measures are restricted. For secure data routing in WSN, it becomes vital to identify insider packet drop attacks. The trust mechanism is an effective strategy for detecting this assault. Each node in this system validates the trustworthiness of its neighbors before transmitting packets, ensuring that only trust-worthy nodes get packets. With such a trust-aware scheme, however, there is a risk of false alarm. This work develops an adaptive trust computation model (TCM)which is implemented in our already proposed Chimp Optimization Algorithm-based Energy-Aware Secure Routing Protocol (COA-EASRP) for WSN. The proposed technique computes the optimal path using the hybrid combination of COA-EASRP and AODV as well as TCM is used to indicate false alarms in detecting selfish nodes. Our Proposed approach provides the series of Simulation outputs carried out based on various parameters
Chandra Bose, S.Subash, R, Vinay D, Raju, Yeligeti, Bhavana, N., Sengupta, Anirbit, Singh, Prabhishek.  2022.  A Deep Learning-Based Fog Computing and cloud computing for Orchestration. 2022 2nd International Conference on Innovative Sustainable Computational Technologies (CISCT). :1—5.
Fog computing is defined as a decentralized infrastructure that locations storage and processing aspects at the side of the cloud, the place records sources such as software customers and sensors exist. The Fog Computing is the time period coined via Cisco that refers to extending cloud computing to an area of the enterprise’s network. Thus, it is additionally recognized as Edge Computing or Fogging. It allows the operation of computing, storage, and networking offerings between give up units and computing facts centers. Fog computing is defined as a decentralized infrastructure that locations storage and processing aspects at the side of the cloud, the place records sources such as software customers and sensors exist. The fog computing Intelligence as Artificial Intelligence (AI) is furnished by way of Fog Nodes in cooperation with Clouds. In Fog Nodes several sorts of AI studying can be realized - such as e.g., Machine Learning (ML), Deep Learning (DL). Thanks to the Genius of Fog Nodes, for example, we communicate of Intelligent IoT.
2023-07-20
Human, Soheil, Pandit, Harshvardhan J., Morel, Victor, Santos, Cristiana, Degeling, Martin, Rossi, Arianna, Botes, Wilhelmina, Jesus, Vitor, Kamara, Irene.  2022.  Data Protection and Consenting Communication Mechanisms: Current Open Proposals and Challenges. 2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). :231—239.
Data Protection and Consenting Communication Mechanisms (DPCCMs) enable users to express their privacy decisions and manage their online consent. Thus, they can become a crucial means of protecting individuals' online privacy and agency, thereby replacing the current problematic practices such as “consent dialogues”. Based on an in-depth analysis of different DPCCMs, we propose an interdisciplinary set of factors that can be used for a comparison of such mechanisms. Moreover, we use the results from a qualitative expert study to identify some of the main multidisciplinary challenges that DPCCMs should address to become widely adopted data privacy mechanisms. We leverage both the factors and the challenges to compare two current open specifications, i.e. the Advanced Data Protection Control (ADPC) and the Global Privacy Control (GPC), and discuss future work.
2023-07-19
Cui, Jia, Zhang, Zhao.  2022.  Design of Information Management System for Students' Innovation Activities Based on B/S Architecture. 2022 International Symposium on Advances in Informatics, Electronics and Education (ISAIEE). :142—145.
Under the background of rapid development of campus informatization, the information management of college students' innovative activities is slightly outdated, and the operation of the traditional innovative activity record system has gradually become rigid. In response to this situation, this paper proposes a B/S architecture-based information management system for college students' innovative activities based on the current situation that the network and computers are widely used, which is designed for the roles of relevant managers of students on campus, such as class teachers, teachers and counselors, and has developed various functions to meet the needs of such users as class teachers, including user The system is designed to meet the needs of classroom teachers, classroom teachers and tutors. In order to meet the requirements of generality, expandability and ease of development, the overall architecture of the system is based on the javaEE platform, with JSP technology as the main development technology.
Voulgaris, Konstantinos, Kiourtis, Athanasios, Karamolegkos, Panagiotis, Karabetian, Andreas, Poulakis, Yannis, Mavrogiorgou, Argyro, Kyriazis, Dimosthenis.  2022.  Data Processing Tools for Graph Data Modelling Big Data Analytics. 2022 13th International Congress on Advanced Applied Informatics Winter (IIAI-AAI-Winter). :208—212.
Any Big Data scenario eventually reaches scalability concerns for several factors, often storage or computing power related. Modern solutions have been proven to be effective in multiple domains and have automated many aspects of the Big Data pipeline. In this paper, we aim to present a solution for deploying event-based automated data processing tools for low code environments that aim to minimize the need for user input and can effectively handle common data processing jobs, as an alternative to distributed solutions which require language specific libraries and code. Our architecture uses a combination of a network exposed service with a cluster of “Data Workers” that handle data processing jobs effectively without requiring manual input from the user. This system proves to be effective at handling most data processing scenarios and allows for easy expandability by following simple patterns when declaring any additional jobs.
Zhao, Hongwei, Qi, Yang, Li, Weilin.  2022.  Decentralized Power Management for Multi-active Bridge Converter. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society. :1—6.
Multi-active bridge (MAB) converter has played an important role in the power conversion of renewable-based smart grids, electrical vehicles, and more/all electrical aircraft. However, the increase of MAB submodules greatly complicates the control architecture. In this regard, the conventional centralized control strategies, which rely on a single controller to process all the information, will be limited by the computation burden. To overcome this issue, this paper proposes a decentralized power management strategy for MAB converter. The switching frequencies of MAB submodules are adaptively regulated based on the submodule local information. Through this effort, flexible electrical power routing can be realized without communications among submodules. The proposed methodology not only relieves the computation burden of MAB control system, but also improves its modularity, flexibility, and expandability. Finally, the experiment results of a three-module MAB converter are presented for verification.
Moradi, Majid, Heydari, Mojtaba, Zarei, Seyed Fariborz.  2022.  Distributed Secondary Control for Voltage Restoration of ESSs in a DC Microgrid. 2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC). :431—436.
Due to the intermittent nature of renewable energy sources, the implementation of energy storage systems (ESSs) is crucial for the reliable operation of microgrids. This paper proposes a peer-to-peer distributed secondary control scheme for accurate voltage restoration of distributed ESS units in a DC microgrid. The presented control framework only requires local and neighboring information to function. Besides, the ESSs communicate with each other through a sparse network in a discrete fashion compared to existing approaches based on continuous data exchange. This feature ensures reliability, expandability, and flexibility of the proposed strategy for a more practical realization of distributed control paradigm. A simulation case study is presented using MATLAB/Simulink to illustrate the performance and effectiveness of the proposed control strategy.
Vekić, Marko, Isakov, Ivana, Rapaić, Milan, Grabić, Stevan, Todorović, Ivan, Porobić, Vlado.  2022.  Decentralized microgrid control "beyond droop". 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). :1—5.
Various approaches of microgrid operation have been proposed, albeit with noticeable issues such as power-sharing, control of frequency and voltage excursions, applicability on different grids, etc. This paper proposes a goal function-based, decentralized control that addresses the mentioned problems and secures the microgrid stability by constraining the frequency and node deviations across the grid while simultaneously supporting the desired active power exchange between prosumer nodes. The control algorithm is independent of network topology and enables arbitrary node connection, i.e. seamless microgrid expandability. To confirm the effectiveness of the proposed control strategy, simulation results are presented and discussed.
2023-07-18
Kuang, Randy, Perepechaenko, Maria.  2022.  Digital Signature Performance of a New Quantum Safe Multivariate Polynomial Public Key Algorithm. 2022 7th International Conference on Computer and Communication Systems (ICCCS). :419—424.
We discuss the performance of a new quantumsafe multivariate digital signature scheme proposed recently, called the Multivariate Polynomial Public Key Digital Signature (MPPK DS) scheme. Leveraging MPPK KEM or key exchange mechanism, the MPPK DS scheme is established using modular exponentiation with a randomly chosen secret base from a prime field. The security of the MPPK DS algorithm largely benefits from a generalized safe prime associated with the said field and the Euler totient function. We can achieve NIST security levels I, III, and V over a 64-bit prime field, with relatively small public key sizes of 128 bytes, 192 bytes, and 256 bytes for security levels I, III, and V, respectively. The signature sizes are 80 bytes for level I, 120 bytes for level III, and 160 bytes for level V. The MPPK DS scheme offers probabilistic procedures for signing and verification. That is, for each given signing message, a signer can randomly pick a base integer to be used for modular exponentiation with a private key, and a verifier can verify the signature with the digital message, based on the verification relationship, using any randomly selected noise variables. The verification process can be repeated as many times as the verifier wishes for different noise values, however, for a true honest signature, the verification will always pass. This probabilistic feature largely restricts an adversary to perform spoofing attacks. In this paper, we conduct some performance analyses by implementing MPPK DS in Java. We compare its performance with benchmark performances of NIST PQC Round 3 finalists: Rainbow, Dilithium, and Falcon. Overall, the MPPK DS scheme demonstrates equivalent or better performance, and much smaller public key, as well as signature sizes, compared to the three NIST PQC Round 3 finalists.
Nguyen, Thanh Tuan, Nguyen, Thanh Phuong, Tran, Thanh-Hai.  2022.  Detecting Reflectional Symmetry of Binary Shapes Based on Generalized R-Transform. 2022 International Conference on Multimedia Analysis and Pattern Recognition (MAPR). :1—6.
Analyzing reflectionally symmetric features inside an image is one of the important processes for recognizing the peculiar appearance of natural and man-made objects, biological patterns, etc. In this work, we will point out an efficient detector of reflectionally symmetric shapes by addressing a class of projection-based signatures that are structured by a generalized \textbackslashmathcalR\_fm-transform model. To this end, we will firstly prove the \textbackslashmathcalR\_fmˆ-transform in accordance with reflectional symmetry detection. Then different corresponding \textbackslashmathcalR\_fm-signatures of binary shapes are evaluated in order to determine which the corresponding exponentiation of the \textbackslashmathcalR\_fm-transform is the best for the detection. Experimental results of detecting on single/compound contour-based shapes have validated that the exponentiation of 10 is the most discriminatory, with over 2.7% better performance on the multiple-axis shapes in comparison with the conventional one. Additionally, the proposed detector also outperforms most of other existing methods. This finding should be recommended for applications in practice.
Bhosale, Nilesh, Meshram, Akshaykumar, Pohane, Rupesh, Adak, Malabika, Bawane, Dnyaneshwar, Reddy, K. T. V..  2022.  Design of IsoQER Cryptosystem using IPDLP. 2022 International Conference on Emerging Trends in Engineering and Medical Sciences (ICETEMS). :363—367.
The suggested IsoQuadratic Exponentiation Randomized isocryptosystem design is the unique approach for public key encipher algorithm using IsoPartial Discrete Logarithm Problem and preservation of the recommended IsoQuadratic Exponentiation Randomized isocryptosystem be established against hardness of IsoPartial Discrete Logarithm Problem. Therewith, we demonstrated the possibility of an additional secured algorithm. The offered unique IsoQuadratic Exponentiation Randomized isocryptosystem is suitable for low bandwidth transmission, low storage and low numeration in cyberspace.
2023-07-13
Eisele, Max.  2022.  Debugger-driven Embedded Fuzzing. 2022 IEEE Conference on Software Testing, Verification and Validation (ICST). :483–485.
Embedded Systems - the hidden computers in our lives - are deployed in the billionths and are already in the focus of attackers. They pose security risks when not tested and maintained thoroughly. In recent years, fuzzing has become a promising technique for automated security testing of programs, which can generate tons of test inputs for a program. Fuzzing is hardly applied to embedded systems, because of their high diversity and closed character. During my research I want tackle that gap in fuzzing embedded systems - short: “Embedded Fuzzing”. My goal is to obtain insights of the embedded system during execution, by using common debugging interfaces and hardware breakpoints to enable guided fuzzing in a generic and widely applicable way. Debugging interfaces and hardware breakpoints are available for most common microcontrollers, generating a potential industry impact. Preliminary results show that the approach covers basic blocks faster than blackbox fuzzing. Additionally, it is source code agnostic and leaves the embedded firmware unaltered.
ISSN: 2159-4848
2023-07-12
B C, Manoj Kumar, R J, Anil Kumar, D, Shashidhara, M, Prem Singh.  2022.  Data Encryption and Decryption Using DNA and Embedded Technology. 2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT). :1—5.
Securing communication and information is known as cryptography. To convert messages from plain text to cipher text and the other way around. It is the process of protecting the data and sending it to the right audience so they can understand and process it. Hence, unauthorized access is avoided. This work suggests leveraging DNA technology for encrypt and decrypt the data. The main aim of utilizing the AES in this stage will transform ASCII code to hexadecimal to binary coded form and generate DNA. The message is encrypted with a random key. Shared key used for encrypt and decrypt the data. The encrypted data will be disguised as an image using steganography. To protect our data from hijackers, assailants, and muggers, it is frequently employed in institutions, banking, etc.
Ogiela, Marek R., Ogiela, Urszula.  2022.  DNA-based Secret Sharing and Hiding in Dispersed Computing. 2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). :126—127.
In this paper will be described a new security protocol for secret sharing and hiding, which use selected personal features. Such technique allows to create human-oriented personalized security protocols dedicated for particular users. Proposed method may be applied in dispersed computing systems, where secret data should be divided into particular number of parts.
Dwiko Satriyo, U. Y. S, Rahutomo, Faisal, Harjito, Bambang, Prasetyo, Heri.  2022.  DNA Cryptography Based on NTRU Cryptosystem to Improve Security. 2022 IEEE 8th Information Technology International Seminar (ITIS). :27—31.
Information exchange occurs all the time in today’s internet era. Some of the data are public, and some are private. Asymmetric cryptography plays a critical role in securing private data transfer. However, technological advances caused private data at risk due to the presence of quantum computers. Therefore, we need a new method for securing private data. This paper proposes combining DNA cryptography methods based on the NTRU cryptosystem to enhance security data confidentiality. This method is compared with conventional public key cryptography methods. The comparison shows that the proposed method has a slow encryption and decryption time compared to other methods except for RSA. However, the key generation time of the proposed method is much faster than other methods tested except for ECC. The proposed method is superior in key generation time and considerably different from other tested methods. Meanwhile, the encryption and decryption time is slower than other methods besides RSA. The test results can get different results based on the programming language used.
Maity, Ilora, Vu, Thang X., Chatzinotas, Symeon, Minardi, Mario.  2022.  D-ViNE: Dynamic Virtual Network Embedding in Non-Terrestrial Networks. 2022 IEEE Wireless Communications and Networking Conference (WCNC). :166—171.
In this paper, we address the virtual network embedding (VNE) problem in non-terrestrial networks (NTNs) enabling dynamic changes in the virtual network function (VNF) deployment to maximize the service acceptance rate and service revenue. NTNs such as satellite networks involve highly dynamic topology and limited resources in terms of rate and power. VNE in NTNs is a challenge because a static strategy under-performs when new service requests arrive or the network topology changes unexpectedly due to failures or other events. Existing solutions do not consider the power constraint of satellites and rate limitation of inter-satellite links (ISLs) which are essential parameters for dynamic adjustment of existing VNE strategy in NTNs. In this work, we propose a dynamic VNE algorithm that selects a suitable VNE strategy for new and existing services considering the time-varying network topology. The proposed scheme, D-ViNE, increases the service acceptance ratio by 8.51% compared to the benchmark scheme TS-MAPSCH.
2023-07-11
Sari, Indah Permata, Nahor, Kevin Marojahan Banjar, Hariyanto, Nanang.  2022.  Dynamic Security Level Assessment of Special Protection System (SPS) Using Fuzzy Techniques. 2022 International Seminar on Intelligent Technology and Its Applications (ISITIA). :377—382.
This study will be focused on efforts to increase the reliability of the Bangka Electricity System by designing the interconnection of the Bangka system with another system that is stronger and has a better energy mix, the Sumatra System. The novelty element in this research is the design of system protection using Special Protection System (SPS) as well as a different assessment method using the Fuzzy Technique This research will analyze the implementation of the SPS event-based and parameter-based as a new defense scheme by taking corrective actions to keep the system stable and reliable. These actions include tripping generators, loads, and reconfiguring the system automatically and quickly. The performance of this SPS will be tested on 10 contingency events with four different load profiles and the system response will be observed in terms of frequency stability, voltage, and rotor angle. From the research results, it can be concluded that the SPS performance on the Bangka-Sumatra Interconnection System has a better and more effective performance than the existing defense scheme, as evidenced by the results of dynamic security assessment (DSA) testing using Fuzzy Techniques.
2023-07-10
Zhao, Zhihui, Zeng, Yicheng, Wang, Jinfa, Li, Hong, Zhu, Hongsong, Sun, Limin.  2022.  Detection and Incentive: A Tampering Detection Mechanism for Object Detection in Edge Computing. 2022 41st International Symposium on Reliable Distributed Systems (SRDS). :166—177.
The object detection tasks based on edge computing have received great attention. A common concern hasn't been addressed is that edge may be unreliable and uploads the incorrect data to cloud. Existing works focus on the consistency of the transmitted data by edge. However, in cases when the inputs and the outputs are inherently different, the authenticity of data processing has not been addressed. In this paper, we first simply model the tampering detection. Then, bases on the feature insertion and game theory, the tampering detection and economic incentives mechanism (TDEI) is proposed. In tampering detection, terminal negotiates a set of features with cloud and inserts them into the raw data, after the cloud determines whether the results from edge contain the relevant information. The honesty incentives employs game theory to instill the distrust among different edges, preventing them from colluding and thwarting the tampering detection. Meanwhile, the subjectivity of nodes is also considered. TDEI distributes the tampering detection to all edges and realizes the self-detection of edge results. Experimental results based on the KITTI dataset, show that the accuracy of detection is 95% and 80%, when terminal's additional overhead is smaller than 30% for image and 20% for video, respectively. The interference ratios of TDEI to raw data are about 16% for video and 0% for image, respectively. Finally, we discuss the advantage and scalability of TDEI.
2023-06-30
Subramanian, Rishabh.  2022.  Differential Privacy Techniques for Healthcare Data. 2022 International Conference on Intelligent Data Science Technologies and Applications (IDSTA). :95–100.
This paper analyzes techniques to enable differential privacy by adding Laplace noise to healthcare data. First, as healthcare data contain natural constraints for data to take only integral values, we show that drawing only integral values does not provide differential privacy. In contrast, rounding randomly drawn values to the nearest integer provides differential privacy. Second, when a variable is constructed using two other variables, noise must be added to only one of them. Third, if the constructed variable is a fraction, then noise must be added to its constituent private variables, and not to the fraction directly. Fourth, the accuracy of analytics following noise addition increases with the privacy budget, ϵ, and the variance of the independent variable. Finally, the accuracy of analytics following noise addition increases disproportionately with an increase in the privacy budget when the variance of the independent variable is greater. Using actual healthcare data, we provide evidence supporting the two predictions on the accuracy of data analytics. Crucially, to enable accuracy of data analytics with differential privacy, we derive a relationship to extract the slope parameter in the original dataset using the slope parameter in the noisy dataset.
Song, Yuning, Ding, Liping, Liu, Xuehua, Du, Mo.  2022.  Differential Privacy Protection Algorithm Based on Zero Trust Architecture for Industrial Internet. 2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS). :917–920.
The Zero Trust Architecture is an important part of the industrial Internet security protection standard. When analyzing industrial data for enterprise-level or industry-level applications, differential privacy (DP) is an important technology for protecting user privacy. However, the centralized and local DP used widely nowadays are only applicable to the networks with fixed trust relationship and cannot cope with the dynamic security boundaries in Zero Trust Architecture. In this paper, we design a differential privacy scheme that can be applied to Zero Trust Architecture. It has a consistent privacy representation and the same noise mechanism in centralized and local DP scenarios, and can balance the strength of privacy protection and the flexibility of privacy mechanisms. We verify the algorithm in the experiment, that using maximum expectation estimation method it is able to obtain equal or even better result of the utility with the same level of security as traditional methods.
Lu, Xiaotian, Piao, Chunhui, Han, Jianghe.  2022.  Differential Privacy High-dimensional Data Publishing Method Based on Bayesian Network. 2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI). :623–627.
Ensuring high data availability while realizing privacy protection is a research hotspot in the field of privacy-preserving data publishing. In view of the instability of data availability in the existing differential privacy high-dimensional data publishing methods based on Bayesian networks, this paper proposes an improved MEPrivBayes privacy-preserving data publishing method, which is mainly improved from two aspects. Firstly, in view of the structural instability caused by the random selection of Bayesian first nodes, this paper proposes a method of first node selection and Bayesian network construction based on the Maximum Information Coefficient Matrix. Then, this paper proposes a privacy budget elastic allocation algorithm: on the basis of pre-setting differential privacy budget coefficients for all branch nodes and all leaf nodes in Bayesian network, the influence of branch nodes on their child nodes and the average correlation degree between leaf nodes and all other nodes are calculated, then get a privacy budget strategy. The SVM multi-classifier is constructed with privacy preserving data as training data set, and the original data set is used as input to evaluate the prediction accuracy in this paper. The experimental results show that the MEPrivBayes method proposed in this paper has higher data availability than the classical PrivBayes method. Especially when the privacy budget is small (noise is large), the availability of the data published by MEPrivBayes decreases less.
Mimoto, Tomoaki, Hashimoto, Masayuki, Yokoyama, Hiroyuki, Nakamura, Toru, Isohara, Takamasa, Kojima, Ryosuke, Hasegawa, Aki, Okuno, Yasushi.  2022.  Differential Privacy under Incalculable Sensitivity. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :27–31.
Differential privacy mechanisms have been proposed to guarantee the privacy of individuals in various types of statistical information. When constructing a probabilistic mechanism to satisfy differential privacy, it is necessary to consider the impact of an arbitrary record on its statistics, i.e., sensitivity, but there are situations where sensitivity is difficult to derive. In this paper, we first summarize the situations in which it is difficult to derive sensitivity in general, and then propose a definition equivalent to the conventional definition of differential privacy to deal with them. This definition considers neighboring datasets as in the conventional definition. Therefore, known differential privacy mechanisms can be applied. Next, as an example of the difficulty in deriving sensitivity, we focus on the t-test, a basic tool in statistical analysis, and show that a concrete differential privacy mechanism can be constructed in practice. Our proposed definition can be treated in the same way as the conventional differential privacy definition, and can be applied to cases where it is difficult to derive sensitivity.
Shi, Er-Mei, Liu, Jia-Xi, Ji, Yuan-Ming, Chang, Liang.  2022.  DP-BEGAN: A Generative Model of Differential Privacy Algorithm. 2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI). :168–172.
In recent years, differential privacy has gradually become a standard definition in the field of data privacy protection. Differential privacy does not need to make assumptions about the prior knowledge of privacy adversaries, so it has a more stringent effect than existing privacy protection models and definitions. This good feature has been used by researchers to solve the in-depth learning problem restricted by the problem of privacy and security, making an important breakthrough, and promoting its further large-scale application. Combining differential privacy with BEGAN, we propose the DP-BEGAN framework. The differential privacy is realized by adding carefully designed noise to the gradient of Gan model training, so as to ensure that Gan can generate unlimited synthetic data that conforms to the statistical characteristics of source data and does not disclose privacy. At the same time, it is compared with the existing methods on public datasets. The results show that under a certain privacy budget, this method can generate higher quality privacy protection data more efficiently, which can be used in a variety of data analysis tasks. The privacy loss is independent of the amount of synthetic data, so it can be applied to large datasets.