Visible to the public Biblio

Found 1140 results

Filters: First Letter Of Title is E  [Clear All Filters]
2021-02-03
Kennard, M., Zhang, H., Akimoto, Y., Hirokawa, M., Suzuki, K..  2020.  Effects of Visual Biofeedback on Competition Performance Using an Immersive Mixed Reality System. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :3793—3798.

This paper investigates the effects of real time visual biofeedback for improving sports performance using a large scale immersive mixed reality system in which users are able to play a simulated game of curling. The users slide custom curling stones across the floor onto a projected target whose size is dictated by the user’s stress-related physiological measure; heart rate (HR). The higher HR the player has, the smaller the target will be, and vice-versa. In the experiment participants were asked to compete in three different conditions: baseline, with and without the proposed biofeedback. The results show that when providing a visual representation of the player’s HR or "choking" in competition, it helped the player understand their condition and improve competition performance (P-value of 0.0391).

Illing, B., Westhoven, M., Gaspers, B., Smets, N., Brüggemann, B., Mathew, T..  2020.  Evaluation of Immersive Teleoperation Systems using Standardized Tasks and Measurements. 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :278—285.

Despite advances regarding autonomous functionality for robots, teleoperation remains a means for performing delicate tasks in safety critical contexts like explosive ordnance disposal (EOD) and ambiguous environments. Immersive stereoscopic displays have been proposed and developed in this regard, but bring about their own specific problems, e.g., simulator sickness. This work builds upon standardized test environments to yield reproducible comparisons between different robotic platforms. The focus was placed on testing three optronic systems of differing degrees of immersion: (1) A laptop display showing multiple monoscopic camera views, (2) an off-the-shelf virtual reality headset coupled with a pantilt-based stereoscopic camera, and (3) a so-called Telepresence Unit, providing fast pan, tilt, yaw rotation, stereoscopic view, and spatial audio. Stereoscopic systems yielded significant faster task completion only for the maneuvering task. As expected, they also induced Simulator Sickness among other results. However, the amount of Simulator Sickness varied between both stereoscopic systems. Collected data suggests that a higher degree of immersion combined with careful system design can reduce the to-be-expected increase of Simulator Sickness compared to the monoscopic camera baseline while making the interface subjectively more effective for certain tasks.

2021-02-01
Calhoun, C. S., Reinhart, J., Alarcon, G. A., Capiola, A..  2020.  Establishing Trust in Binary Analysis in Software Development and Applications. 2020 IEEE International Conference on Human-Machine Systems (ICHMS). :1–4.
The current exploratory study examined software programmer trust in binary analysis techniques used to evaluate and understand binary code components. Experienced software developers participated in knowledge elicitations to identify factors affecting trust in tools and methods used for understanding binary code behavior and minimizing potential security vulnerabilities. Developer perceptions of trust in those tools to assess implementation risk in binary components were captured across a variety of application contexts. The software developers reported source security and vulnerability reports provided the best insight and awareness of potential issues or shortcomings in binary code. Further, applications where the potential impact to systems and data loss is high require relying on more than one type of analysis to ensure the binary component is sound. The findings suggest binary analysis is viable for identifying issues and potential vulnerabilities as part of a comprehensive solution for understanding binary code behavior and security vulnerabilities, but relying simply on binary analysis tools and binary release metadata appears insufficient to ensure a secure solution.
2021-01-28
Wang, N., Song, H., Luo, T., Sun, J., Li, J..  2020.  Enhanced p-Sensitive k-Anonymity Models for Achieving Better Privacy. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :148—153.

To our best knowledge, the p-sensitive k-anonymity model is a sophisticated model to resist linking attacks and homogeneous attacks in data publishing. However, if the distribution of sensitive values is skew, the model is difficult to defend against skew attacks and even faces sensitive attacks. In practice, the privacy requirements of different sensitive values are not always identical. The “one size fits all” unified privacy protection level may cause unnecessary information loss. To address these problems, the paper quantifies privacy requirements with the concept of IDF and concerns more about sensitive groups. Two enhanced anonymous models with personalized protection characteristic, that is, (p,αisg) -sensitive k-anonymity model and (pi,αisg)-sensitive k-anonymity model, are then proposed to resist skew attacks and sensitive attacks. Furthermore, two clustering algorithms with global search and local search are designed to implement our models. Experimental results show that the two enhanced models have outstanding advantages in better privacy at the expense of a little data utility.

Krasnov, A. N., Prakhova, M. Y., Novikova, U. V..  2020.  Ensuring Cybersecurity of Data Transmission in Limited Energy Consumption Networks. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1—5.

In the northern gas fields, most data are transmitted via wireless networks, which requires special transmission security measures. Herewith, the gas field infrastructure dictates cybersecurity modules to not only meet standard requirements but also ensure reduced energy consumption. The paper discusses the issue of building such a module for a process control system based on the RTP-04M recorder operating in conjunction with an Android-based mobile device. The software options used for the RSA and Diffie-Hellman data encryption and decryption algorithms on both the RTP-04M and the Android-based mobile device sides in the Keil μVision4 and Android Studio software environments, respectively, have shown that the Diffie-Hellman algorithm is preferable. It provides significant savings in RAM and CPU resources and power consumption of the recorder. In terms of energy efficiency, the implemented programs have been analyzed in the Android Studio (Android Profiler) and Simplicity Studio (Advanced Energy Monitor) environments. The integration of this module into the existing software will improve the field's PCS cybersecurity level due to protecting data transmitted from third-party attacks.

Fan, M., Yu, L., Chen, S., Zhou, H., Luo, X., Li, S., Liu, Y., Liu, J., Liu, T..  2020.  An Empirical Evaluation of GDPR Compliance Violations in Android mHealth Apps. 2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE). :253—264.

The purpose of the General Data Protection Regulation (GDPR) is to provide improved privacy protection. If an app controls personal data from users, it needs to be compliant with GDPR. However, GDPR lists general rules rather than exact step-by-step guidelines about how to develop an app that fulfills the requirements. Therefore, there may exist GDPR compliance violations in existing apps, which would pose severe privacy threats to app users. In this paper, we take mobile health applications (mHealth apps) as a peephole to examine the status quo of GDPR compliance in Android apps. We first propose an automated system, named HPDROID, to bridge the semantic gap between the general rules of GDPR and the app implementations by identifying the data practices declared in the app privacy policy and the data relevant behaviors in the app code. Then, based on HPDROID, we detect three kinds of GDPR compliance violations, including the incompleteness of privacy policy, the inconsistency of data collections, and the insecurity of data transmission. We perform an empirical evaluation of 796 mHealth apps. The results reveal that 189 (23.7%) of them do not provide complete privacy policies. Moreover, 59 apps collect sensitive data through different measures, but 46 (77.9%) of them contain at least one inconsistent collection behavior. Even worse, among the 59 apps, only 8 apps try to ensure the transmission security of collected data. However, all of them contain at least one encryption or SSL misuse. Our work exposes severe privacy issues to raise awareness of privacy protection for app users and developers.

Kalaiyarasi, G., Balaji, K., Narmadha, T., Naveen, V..  2020.  E-Voting System In Smart Phone Using Mobile Application. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :1466—1469.

The development in the web technologies given growth to the new application that will make the voting process very easy and proficient. The E-voting helps in providing convenient, capture and count the votes in an election. This project provides the description about e-voting using an Android platform. The proposed e-voting system helps the user to cast the vote without visiting the polling booth. The application provides authentication measures in order to avoid fraud voters using the OTP. Once the voting process is finished the results will be available within a fraction of seconds. All the casted vote count is encrypted using AES256 algorithm and stored in the database in order to avoid any outbreaks and revelation of results by third person other than the administrator.

Collins, B. C., Brown, P. N..  2020.  Exploiting an Adversary’s Intentions in Graphical Coordination Games. 2020 American Control Conference (ACC). :4638—4643.

How does information regarding an adversary's intentions affect optimal system design? This paper addresses this question in the context of graphical coordination games where an adversary can indirectly influence the behavior of agents by modifying their payoffs. We study a situation in which a system operator must select a graph topology in anticipation of the action of an unknown adversary. The designer can limit her worst-case losses by playing a security strategy, effectively planning for an adversary which intends maximum harm. However, fine-grained information regarding the adversary's intention may help the system operator to fine-tune the defenses and obtain better system performance. In a simple model of adversarial behavior, this paper asks how much a system operator can gain by fine-tuning a defense for known adversarial intent. We find that if the adversary is weak, a security strategy is approximately optimal for any adversary type; however, for moderately-strong adversaries, security strategies are far from optimal.

Seiler, M., Trautmann, H., Kerschke, P..  2020.  Enhancing Resilience of Deep Learning Networks By Means of Transferable Adversaries. 2020 International Joint Conference on Neural Networks (IJCNN). :1—8.

Artificial neural networks in general and deep learning networks in particular established themselves as popular and powerful machine learning algorithms. While the often tremendous sizes of these networks are beneficial when solving complex tasks, the tremendous number of parameters also causes such networks to be vulnerable to malicious behavior such as adversarial perturbations. These perturbations can change a model's classification decision. Moreover, while single-step adversaries can easily be transferred from network to network, the transfer of more powerful multi-step adversaries has - usually - been rather difficult.In this work, we introduce a method for generating strong adversaries that can easily (and frequently) be transferred between different models. This method is then used to generate a large set of adversaries, based on which the effects of selected defense methods are experimentally assessed. At last, we introduce a novel, simple, yet effective approach to enhance the resilience of neural networks against adversaries and benchmark it against established defense methods. In contrast to the already existing methods, our proposed defense approach is much more efficient as it only requires a single additional forward-pass to achieve comparable performance results.

2021-01-25
Stan, O., Bitton, R., Ezrets, M., Dadon, M., Inokuchi, M., Yoshinobu, O., Tomohiko, Y., Elovici, Y., Shabtai, A..  2020.  Extending Attack Graphs to Represent Cyber-Attacks in Communication Protocols and Modern IT Networks. IEEE Transactions on Dependable and Secure Computing. :1–1.
An attack graph is a method used to enumerate the possible paths that an attacker can take in the organizational network. MulVAL is a known open-source framework used to automatically generate attack graphs. MulVAL's default modeling has two main shortcomings. First, it lacks the ability to represent network protocol vulnerabilities, and thus it cannot be used to model common network attacks, such as ARP poisoning. Second, it does not support advanced types of communication, such as wireless and bus communication, and thus it cannot be used to model cyber-attacks on networks that include IoT devices or industrial components. In this paper, we present an extended network security model for MulVAL that: (1) considers the physical network topology, (2) supports short-range communication protocols, (3) models vulnerabilities in the design of network protocols, and (4) models specific industrial communication architectures. Using the proposed extensions, we were able to model multiple attack techniques including: spoofing, man-in-the-middle, and denial of service attacks, as well as attacks on advanced types of communication. We demonstrate the proposed model in a testbed which implements a simplified network architecture comprised of both IT and industrial components
2021-01-22
Ayoade, G., Akbar, K. A., Sahoo, P., Gao, Y., Agarwal, A., Jee, K., Khan, L., Singhal, A..  2020.  Evolving Advanced Persistent Threat Detection using Provenance Graph and Metric Learning. 2020 IEEE Conference on Communications and Network Security (CNS). :1—9.

Advanced persistent threats (APT) have increased in recent times as a result of the rise in interest by nation-states and sophisticated corporations to obtain high profile information. Typically, APT attacks are more challenging to detect since they leverage zero-day attacks and common benign tools. Furthermore, these attack campaigns are often prolonged to evade detection. We leverage an approach that uses a provenance graph to obtain execution traces of host nodes in order to detect anomalous behavior. By using the provenance graph, we extract features that are then used to train an online adaptive metric learning. Online metric learning is a deep learning method that learns a function to minimize the separation between similar classes and maximizes the separation between dis-similar instances. We compare our approach with baseline models and we show our method outperforms the baseline models by increasing detection accuracy on average by 11.3 % and increases True positive rate (TPR) on average by 18.3 %.

Hayati, N., Suryanto, Y., Ramli, K., Suryanegara, M..  2019.  End-to-End Voice Encryption Based on Multiple Circular Chaotic Permutation. 2019 2nd International Conference on Communication Engineering and Technology (ICCET). :101–106.

Voice communication is an important need in daily activities whether delivered with or without technology. Telecommunication technology has accommodated this need by providing a wide range of infrastructure, including large varieties of devices used as intermediary and end devices. One of the cellular technologies that is very widely used by the public is GSM (Global System for Mobile), while in the military, trunked radio is still popular. However, the security systems of GSM and trunked radio have limitations. Therefore, this paper proposes a platform to secure voice data over wireless mobile communication by providing end-to-end encryption. This platform is robust to noise, real-time and remains secure. The proposed encryption utilizes multicircular permutations rotated by expanded keys as dynamic keys to scramble the data. We carry out simulations and testbed implementation to prove that application of the proposed method is feasible.

2021-01-20
Aman, W., Haider, Z., Shah, S. W. H., Rahman, M. M. Ur, Dobre, O. A..  2020.  On the Effective Capacity of an Underwater Acoustic Channel under Impersonation Attack. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—7.

This paper investigates the impact of authentication on effective capacity (EC) of an underwater acoustic (UWA) channel. Specifically, the UWA channel is under impersonation attack by a malicious node (Eve) present in the close vicinity of the legitimate node pair (Alice and Bob); Eve tries to inject its malicious data into the system by making Bob believe that she is indeed Alice. To thwart the impersonation attack by Eve, Bob utilizes the distance of the transmit node as the feature/fingerprint to carry out feature-based authentication at the physical layer. Due to authentication at Bob, due to lack of channel knowledge at the transmit node (Alice or Eve), and due to the threshold-based decoding error model, the relevant dynamics of the considered system could be modelled by a Markov chain (MC). Thus, we compute the state-transition probabilities of the MC, and the moment generating function for the service process corresponding to each state. This enables us to derive a closed-form expression of the EC in terms of authentication parameters. Furthermore, we compute the optimal transmission rate (at Alice) through gradient-descent (GD) technique and artificial neural network (ANN) method. Simulation results show that the EC decreases under severe authentication constraints (i.e., more false alarms and more transmissions by Eve). Simulation results also reveal that the (optimal transmission rate) performance of the ANN technique is quite close to that of the GTJ method.

2021-01-18
Barbareschi, M., Barone, S., Mazzeo, A., Mazzocca, N..  2019.  Efficient Reed-Muller Implementation for Fuzzy Extractor Schemes. 2019 14th International Conference on Design Technology of Integrated Systems In Nanoscale Era (DTIS). :1–2.
Nowadays, physical tampering and counterfeiting of electronic devices are still an important security problem and have a great impact on large-scale and distributed applications, such as Internet-of-Things. Physical Unclonable Functions (PUFs) have the potential to be a fundamental means to guarantee intrinsic hardware security, since they promise immunity against most of known attack models. However, inner nature of PUF circuits hinders a wider adoption since responses turn out to be noisy and not stable during time. To overcome this issue, most of PUF implementations require a fuzzy extraction scheme, able to recover responses stability by exploiting error correction codes (ECCs). In this paper, we propose a Reed-Muller (RM) ECC design, meant to be embedded into a fuzzy extractor, that can be efficiently configured in terms of area/delay constraints in order to get reliable responses from PUFs. We provide implementation details and experimental evidences of area/delay efficiency through syntheses on medium-range FPGA device.
Yadav, M. K., Gugal, D., Matkar, S., Waghmare, S..  2019.  Encrypted Keyword Search in Cloud Computing using Fuzzy Logic. 2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT). :1–4.
Research and Development, and information management professionals routinely employ simple keyword searches or more complex Boolean queries when using databases such as PubMed and Ovid and search engines like Google to find the information they need. While satisfying the basic needs of the researcher, basic search is limited which can adversely affect both precision and recall, decreasing productivity and damaging the researchers' ability to discover new insights. The cloud service providers who store user's data may access sensitive information without any proper authority. A basic approach to save the data confidentiality is to encrypt the data. Data encryption also demands the protection of keyword privacy since those usually contain very vital information related to the files. Encryption of keywords protects keyword safety. Fuzzy keyword search enhances system usability by matching the files perfectly or to the nearest possible files against the keywords entered by the user based on similar semantics. Encrypted keyword search in cloud using this logic provides the user, on entering keywords, to receive best possible files in a more secured manner, by protecting the user's documents.
Naik, N., Jenkins, P., Savage, N., Yang, L., Naik, K., Song, J..  2020.  Embedding Fuzzy Rules with YARA Rules for Performance Optimisation of Malware Analysis. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–7.
YARA rules utilises string or pattern matching to perform malware analysis and is one of the most effective methods in use today. However, its effectiveness is dependent on the quality and quantity of YARA rules employed in the analysis. This can be managed through the rule optimisation process, although, this may not necessarily guarantee effective utilisation of YARA rules and its generated findings during its execution phase, as the main focus of YARA rules is in determining whether to trigger a rule or not, for a suspect sample after examining its rule condition. YARA rule conditions are Boolean expressions, mostly focused on the binary outcome of the malware analysis, which may limit the optimised use of YARA rules and its findings despite generating significant information during the execution phase. Therefore, this paper proposes embedding fuzzy rules with YARA rules to optimise its performance during the execution phase. Fuzzy rules can manage imprecise and incomplete data and encompass a broad range of conditions, which may not be possible in Boolean logic. This embedding may be more advantageous when the YARA rules become more complex, resulting in multiple complex conditions, which may not be processed efficiently utilising Boolean expressions alone, thus compromising effective decision-making. This proposed embedded approach is applied on a collected malware corpus and is tested against the standard and enhanced YARA rules to demonstrate its success.
Kushnir, M., Kosovan, H., Kroialo, P., Komarnytskyy, A..  2020.  Encryption of the Images on the Basis of Two Chaotic Systems with the Use of Fuzzy Logic. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :610–613.

Recently, new perspective areas of chaotic encryption have evolved, including fuzzy logic encryption. The presented work proposes an image encryption system based on two chaotic mapping that uses fuzzy logic. The paper also presents numerical calculations of some parameters of statistical analysis, such as, histogram, entropy of information and correlation coefficient, which confirm the efficiency of the proposed algorithm.

2021-01-15
Kobayashi, H., Kadoguchi, M., Hayashi, S., Otsuka, A., Hashimoto, M..  2020.  An Expert System for Classifying Harmful Content on the Dark Web. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1—6.

In this research, we examine and develop an expert system with a mechanism to automate crime category classification and threat level assessment, using the information collected by crawling the dark web. We have constructed a bag of words from 250 posts on the dark web and developed an expert system which takes the frequency of terms as an input and classifies sample posts into 6 criminal category dealing with drugs, stolen credit card, passwords, counterfeit products, child porn and others, and 3 threat levels (high, middle, low). Contrary to prior expectations, our simple and explainable expert system can perform competitively with other existing systems. For short, our experimental result with 1500 posts on the dark web shows 76.4% of recall rate for 6 criminal category classification and 83% of recall rate for 3 threat level discrimination for 100 random-sampled posts.

Yang, X., Li, Y., Lyu, S..  2019.  Exposing Deep Fakes Using Inconsistent Head Poses. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :8261—8265.
In this paper, we propose a new method to expose AI-generated fake face images or videos (commonly known as the Deep Fakes). Our method is based on the observations that Deep Fakes are created by splicing synthesized face region into the original image, and in doing so, introducing errors that can be revealed when 3D head poses are estimated from the face images. We perform experiments to demonstrate this phenomenon and further develop a classification method based on this cue. Using features based on this cue, an SVM classifier is evaluated using a set of real face images and Deep Fakes.
Matern, F., Riess, C., Stamminger, M..  2019.  Exploiting Visual Artifacts to Expose Deepfakes and Face Manipulations. 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW). :83—92.
High quality face editing in videos is a growing concern and spreads distrust in video content. However, upon closer examination, many face editing algorithms exhibit artifacts that resemble classical computer vision issues that stem from face tracking and editing. As a consequence, we wonder how difficult it is to expose artificial faces from current generators? To this end, we review current facial editing methods and several characteristic artifacts from their processing pipelines. We also show that relatively simple visual artifacts can be already quite effective in exposing such manipulations, including Deepfakes and Face2Face. Since the methods are based on visual features, they are easily explicable also to non-technical experts. The methods are easy to implement and offer capabilities for rapid adjustment to new manipulation types with little data available. Despite their simplicity, the methods are able to achieve AUC values of up to 0.866.
Younus, M. A., Hasan, T. M..  2020.  Effective and Fast DeepFake Detection Method Based on Haar Wavelet Transform. 2020 International Conference on Computer Science and Software Engineering (CSASE). :186—190.
DeepFake using Generative Adversarial Networks (GANs) tampered videos reveals a new challenge in today's life. With the inception of GANs, generating high-quality fake videos becomes much easier and in a very realistic manner. Therefore, the development of efficient tools that can automatically detect these fake videos is of paramount importance. The proposed DeepFake detection method takes the advantage of the fact that current DeepFake generation algorithms cannot generate face images with varied resolutions, it is only able to generate new faces with a limited size and resolution, a further distortion and blur is needed to match and fit the fake face with the background and surrounding context in the source video. This transformation causes exclusive blur inconsistency between the generated face and its background in the outcome DeepFake videos, in turn, these artifacts can be effectively spotted by examining the edge pixels in the wavelet domain of the faces in each frame compared to the rest of the frame. A blur inconsistency detection scheme relied on the type of edge and the analysis of its sharpness using Haar wavelet transform as shown in this paper, by using this feature, it can determine if the face region in a video has been blurred or not and to what extent it has been blurred. Thus will lead to the detection of DeepFake videos. The effectiveness of the proposed scheme is demonstrated in the experimental results where the “UADFV” dataset has been used for the evaluation, a very successful detection rate with more than 90.5% was gained.
Nguyen, H. M., Derakhshani, R..  2020.  Eyebrow Recognition for Identifying Deepfake Videos. 2020 International Conference of the Biometrics Special Interest Group (BIOSIG). :1—5.
Deepfake imagery that contains altered faces has become a threat to online content. Current anti-deepfake approaches usually do so by detecting image anomalies, such as visible artifacts or inconsistencies. However, with deepfake advances, these visual artifacts are becoming harder to detect. In this paper, we show that one can use biometric eyebrow matching as a tool to detect manipulated faces. Our method could provide an 0.88 AUC and 20.7% EER for deepfake detection when applied to the highest quality deepfake dataset, Celeb-DF.
2021-01-11
Khandait, P., Hubballi, N., Mazumdar, B..  2020.  Efficient Keyword Matching for Deep Packet Inspection based Network Traffic Classification. 2020 International Conference on COMmunication Systems NETworkS (COMSNETS). :567–570.
Network traffic classification has a range of applications in network management including QoS and security monitoring. Deep Packet Inspection (DPI) is one of the effective method used for traffic classification. DPI is computationally expensive operation involving string matching between payload and application signatures. Existing traffic classification techniques perform multiple scans of payload to classify the application flows - first scan to extract the words and the second scan to match the words with application signatures. In this paper we propose an approach which can classify network flows with single scan of flow payloads using a heuristic method to achieve a sub-linear search complexity. The idea is to scan few initial bytes of payload and determine potential application signature(s) for subsequent signature matching. We perform experiments with a large dataset containing 171873 network flows and show that it has a good classification accuracy of 98%.
2020-12-28
Murugan, S., Jeyakarthic, M..  2020.  An Energy Efficient Security Aware Clustering approach using Fuzzy Logic for Mobile Adhoc Networks. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :551—555.

Security awareness and energy efficiency are two crucial optimization issues present in MANET where the network topology gets adequately changed and is not predictable which affects the lifetime of the MANET. They are extensively analyzed to improvise the lifetime of the MANET. This paper concentrates on the design of an energy-efficient security-aware fuzzy-based clustering (SFLC) technique to make the network secure and energy-efficient. The selection of cluster heads (CHD) process using fuzzy logic (FL) involves the trust factor as an important input variable. Once the CHDs are elected successfully, clusters will be constructed and start to communication with one another as well as the base station (BS). The presented SFLC model is simulated using NS2 and the performance is validated in terms of energy, lifetime and computation time.

Barni, M., Nowroozi, E., Tondi, B., Zhang, B..  2020.  Effectiveness of Random Deep Feature Selection for Securing Image Manipulation Detectors Against Adversarial Examples. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2977—2981.

We investigate if the random feature selection approach proposed in [1] to improve the robustness of forensic detectors to targeted attacks, can be extended to detectors based on deep learning features. In particular, we study the transferability of adversarial examples targeting an original CNN image manipulation detector to other detectors (a fully connected neural network and a linear SVM) that rely on a random subset of the features extracted from the flatten layer of the original network. The results we got by considering three image manipulation detection tasks (resizing, median filtering and adaptive histogram equalization), two original network architectures and three classes of attacks, show that feature randomization helps to hinder attack transferability, even if, in some cases, simply changing the architecture of the detector, or even retraining the detector is enough to prevent the transferability of the attacks.