Visible to the public Biblio

Found 1140 results

Filters: First Letter Of Title is E  [Clear All Filters]
2021-07-08
Gomathi, R. M., Keerthana, Kare, Priyanka, Kamatham, Anandhi, T..  2020.  Energy Efficient Data Gathering Scheme in Underwater Sensor Networks. 2020 5th International Conference on Communication and Electronics Systems (ICCES). :480—485.
In this paper, an energy routing algorithm, called SAODV (secure Ad hoc On Demand Distance Vector) is designed for ad hoc mobile networks. SAODV is capable of both unicast and multicast routing. It is an on demand algorithm, meaning that it builds routes between nodes only as desired by source nodes. It maintains these routes as long as they are needed by the sources. Additionally, SAODV forms trees which connect multicast group members. The trees are composed of the group members and the nodes needed to connect the members. Extensive simulations are conducted to study the power consumption, the end-to-end delay, and the network throughput of our protocols compared with existing protocols. Efficiently handling losses in wireless environments, therefore, has significant importance. Even under benign conditions, various factors, like fading, interference, multi-path effects, and collisions, lead to heavy loss rates on wireless links.
2021-07-07
Jose, Sanjana Elsa, Nayana, P V, Nair, Nima S.  2020.  The Enforcement of Context Aware System Security Protocols with the Aid of Multi Factor Authentication. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :740–744.
In this paper, an attempt has been made to describe Kerberos authentication with multi factor authentication in context aware systems. Multi factor authentication will make the framework increasingly secure and dependable. The Kerberos convention is one of the most generally utilized security conventions on the planet. The security conventions of Kerberos have been around for a considerable length of time for programmers and other malware to Figure out how to sidestep it. This has required a quick support of the Kerberos convention to make it progressively dependable and productive. Right now, endeavor to help explain this by strengthening Kerberos with the assistance of multifaceted verification.
2021-07-02
Braeken, An, Porambage, Pawani, Puvaneswaran, Amirthan, Liyanage, Madhusanka.  2020.  ESSMAR: Edge Supportive Secure Mobile Augmented Reality Architecture for Healthcare. 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech). :1—7.
The recent advances in mobile devices and wireless communication sector transformed Mobile Augmented Reality (MAR) from science fiction to reality. Among the other MAR use cases, the incorporation of this MAR technology in the healthcare sector can elevate the quality of diagnosis and treatment for the patients. However, due to the highly sensitive nature of the data available in this process, it is also highly vulnerable to all types of security threats. In this paper, an edge-based secure architecture is presented for a MAR healthcare application. Based on the ESSMAR architecture, a secure key management scheme is proposed for both the registration and authentication phases. Then the security of the proposed scheme is validated using formal and informal verification methods.
2021-06-30
Sikarwar, Himani, Das, Debasis.  2020.  An Efficient Lightweight Authentication and Batch Verification Scheme for Universal Internet of Vehicles (UIoV). 2020 International Wireless Communications and Mobile Computing (IWCMC). :1266—1271.
Ensuring secure transmission over the communication channel is a fundamental responsibility to achieve the implementation objective of universal internet of vehicles (UIoV) efficiently. Characteristics like highly dynamic topology and scalability of UIoV makes it more vulnerable to different types of privacy and security attacks. Considerable scope of improvement in terms of time complexity and performance can be observed within the existing schemes that address the privacy and security aspects of UIoV. In this paper, we present an improvised authentication and lightweight batch verification method for security and privacy in UIoV. The suggested method reduces the message loss rate, which occurred due to the response time delay by implementing some low-cost cryptographic operations like one-way hash function, concatenation, XOR, and bilinear map. Furthermore, the performance analysis proves that the proposed method is more reliable that reduces the computational delay and has a better performance in the delay-sensitive network as compared to the existing schemes. The experimental results are obtained by implementing the proposed scheme on a desktop-based configuration as well as Raspberry Pi 4.
DelVecchio, Matthew, Flowers, Bryse, Headley, William C..  2020.  Effects of Forward Error Correction on Communications Aware Evasion Attacks. 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications. :1—7.
Recent work has shown the impact of adversarial machine learning on deep neural networks (DNNs) developed for Radio Frequency Machine Learning (RFML) applications. While these attacks have been shown to be successful in disrupting the performance of an eavesdropper, they fail to fully support the primary goal of successful intended communication. To remedy this, a communications-aware attack framework was recently developed that allows for a more effective balance between the opposing goals of evasion and intended communication through the novel use of a DNN to intelligently create the adversarial communication signal. Given the near ubiquitous usage of for-ward error correction (FEC) coding in the majority of deployed systems to correct errors that arise, incorporating FEC in this framework is a natural extension of this prior work and will allow for improved performance in more adverse environments. This work therefore provides contributions to the framework through improved loss functions and design considerations to incorporate inherent knowledge of the usage of FEC codes within the transmitted signal. Performance analysis shows that FEC coding improves the communications aware adversarial attack even if no explicit knowledge of the coding scheme is assumed and allows for improved performance over the prior art in balancing the opposing goals of evasion and intended communications.
2021-06-24
Wesemeyer, Stephan, Boureanu, Ioana, Smith, Zach, Treharne, Helen.  2020.  Extensive Security Verification of the LoRaWAN Key-Establishment: Insecurities Patches. 2020 IEEE European Symposium on Security and Privacy (EuroS P). :425–444.
LoRaWAN (Low-power Wide-Area Networks) is the main specification for application-level IoT (Internet of Things). The current version, published in October 2017, is LoRaWAN 1.1, with its 1.0 precursor still being the main specification supported by commercial devices such as PyCom LoRa transceivers. Prior (semi)-formal investigations into the security of the LoRaWAN protocols are scarce, especially for Lo-RaWAN 1.1. Moreover, amongst these few, the current encodings [4], [9] of LoRaWAN into verification tools unfortunately rely on much-simplified versions of the LoRaWAN protocols, undermining the relevance of the results in practice. In this paper, we fill in some of these gaps. Whilst we briefly discuss the most recent cryptographic-orientated works [5] that looked at LoRaWAN 1.1, our true focus is on producing formal analyses of the security and correctness of LoRaWAN, mechanised inside automated tools. To this end, we use the state-of-the-art prover, Tamarin. Importantly, our Tamarin models are a faithful and precise rendering of the LoRaWAN specifications. For example, we model the bespoke nonce-generation mechanisms newly introduced in LoRaWAN 1.1, as well as the “classical” but shortdomain nonces in LoRaWAN 1.0 and make recommendations regarding these. Whilst we include small parts on device-commissioning and application-level traffic, we primarily scrutinise the Join Procedure of LoRaWAN, and focus on version 1.1 of the specification, but also include an analysis of Lo-RaWAN 1.0. To this end, we consider three increasingly strong threat models, resting on a Dolev-Yao attacker acting modulo different requirements made on various channels (e.g., secure/insecure) and the level of trust placed on entities (e.g., honest/corruptible network servers). Importantly, one of these threat models is exactly in line with the LoRaWAN specification, yet it unfortunately still leads to attacks. In response to the exhibited attacks, we propose a minimal patch of the LoRaWAN 1.1 Join Procedure, which is as backwards-compatible as possible with the current version. We analyse and prove this patch secure in the strongest threat model mentioned above. This work has been responsibly disclosed to the LoRa Alliance, and we are liaising with the Security Working Group of the LoRa Alliance, in order to improve the clarity of the LoRaWAN 1.1 specifications in light of our findings, but also by using formal analysis as part of a feedback-loop of future and current specification writing.
Chen, Sen, Fan, Lingling, Meng, Guozhu, Su, Ting, Xue, Minhui, Xue, Yinxing, Liu, Yang, Xu, Lihua.  2020.  An Empirical Assessment of Security Risks of Global Android Banking Apps. 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE). :1310—1322.
Mobile banking apps, belonging to the most security-critical app category, render massive and dynamic transactions susceptible to security risks. Given huge potential financial loss caused by vulnerabilities, existing research lacks a comprehensive empirical study on the security risks of global banking apps to provide useful insights and improve the security of banking apps. Since data-related weaknesses in banking apps are critical and may directly cause serious financial loss, this paper first revisits the state-of-the-art available tools and finds that they have limited capability in identifying data-related security weaknesses of banking apps. To complement the capability of existing tools in data-related weakness detection, we propose a three-phase automated security risk assessment system, named Ausera, which leverages static program analysis techniques and sensitive keyword identification. By leveraging Ausera, we collect 2,157 weaknesses in 693 real-world banking apps across 83 countries, which we use as a basis to conduct a comprehensive empirical study from different aspects, such as global distribution and weakness evolution during version updates. We find that apps owned by subsidiary banks are always less secure than or equivalent to those owned by parent banks. In addition, we also track the patching of weaknesses and receive much positive feedback from banking entities so as to improve the security of banking apps in practice. We further find that weaknesses derived from outdated versions of banking apps or third-party libraries are highly prone to being exploited by attackers. To date, we highlight that 21 banks have confirmed the weaknesses we reported (including 126 weaknesses in total). We also exchange insights with 7 banks, such as HSBC in UK and OCBC in Singapore, via in-person or online meetings to help them improve their apps. We hope that the insights developed in this paper will inform the communities about the gaps among multiple stakeholders, including banks, academic researchers, and third-party security companies.
Angermeir, Florian, Voggenreiter, Markus, Moyón, Fabiola, Mendez, Daniel.  2021.  Enterprise-Driven Open Source Software: A Case Study on Security Automation. 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). :278—287.
Agile and DevOps are widely adopted by the industry. Hence, integrating security activities with industrial practices, such as continuous integration (CI) pipelines, is necessary to detect security flaws and adhere to regulators’ demands early. In this paper, we analyze automated security activities in CI pipelines of enterprise-driven open source software (OSS). This shall allow us, in the long-run, to better understand the extent to which security activities are (or should be) part of automated pipelines. In particular, we mine publicly available OSS repositories and survey a sample of project maintainers to better understand the role that security activities and their related tools play in their CI pipelines. To increase transparency and allow other researchers to replicate our study (and to take different perspectives), we further disclose our research artefacts.Our results indicate that security activities in enterprise-driven OSS projects are scarce and protection coverage is rather low. Only 6.83% of the analyzed 8,243 projects apply security automation in their CI pipelines, even though maintainers consider security to be rather important. This alerts industry to keep the focus on vulnerabilities of 3rd Party software and it opens space for other improvements of practice which we outline in this manuscript.
2021-06-02
Yazdani, Kasra, Hale, Matthew.  2020.  Error Bounds and Guidelines for Privacy Calibration in Differentially Private Kalman Filtering. 2020 American Control Conference (ACC). :4423—4428.
Differential privacy has emerged as a formal framework for protecting sensitive information in control systems. One key feature is that it is immune to post-processing, which means that arbitrary post-hoc computations can be performed on privatized data without weakening differential privacy. It is therefore common to filter private data streams. To characterize this setup, in this paper we present error and entropy bounds for Kalman filtering differentially private state trajectories. We consider systems in which an output trajectory is privatized in order to protect the state trajectory that produced it. We provide bounds on a priori and a posteriori error and differential entropy of a Kalman filter which is processing the privatized output trajectories. Using the error bounds we develop, we then provide guidelines to calibrate privacy levels in order to keep filter error within pre-specified bounds. Simulation results are presented to demonstrate these developments.
2021-06-01
Shang, X., Shi, L.N., Niu, J.B., Xie, C.Q..  2020.  Efficient Mie Resonance of Metal-masked Titanium Dioxide Nanopillars. 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials). :171—173.
Here, we propose a simple design approach based on metal-masked titanium dioxide nanopillars, which can realize strong Mie resonance in metasurfaces and enables light confinement within itself over the range of visible wavelengths. By selecting the appropriate period and diameter of individual titanium dioxide nanopillars, the coincidence of resonance peak positions derived from excited electric and magnetic dipoles can be achived. And the optical properties in this design have been investigated with the Finite-Difference Time-Domain(FDTD) solutions.
Reijsbergen, Daniël, Anh Dinh, Tien Tuan.  2020.  On Exploiting Transaction Concurrency To Speed Up Blockchains. 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS). :1044—1054.
Consensus protocols are currently the bottlenecks that prevent blockchain systems from scaling. However, we argue that transaction execution is also important to the performance and security of blockchains. In other words, there are ample opportunities to speed up and further secure blockchains by reducing the cost of transaction execution. Our goal is to understand how much we can speed up blockchains by exploiting transaction concurrency available in blockchain workloads. To this end, we first analyze historical data of seven major public blockchains, namely Bitcoin, Bitcoin Cash, Litecoin, Dogecoin, Ethereum, Ethereum Classic, and Zilliqa. We consider two metrics for concurrency, namely the single-transaction conflict rate per block, and the group conflict rate per block. We find that there is more concurrency in UTXO-based blockchains than in account-based ones, although the amount of concurrency in the former is lower than expected. Another interesting finding is that some blockchains with larger blocks have more concurrency than blockchains with smaller blocks. Next, we propose an analytical model for estimating the transaction execution speed-up given an amount of concurrency. Using results from our empirical analysis, the model estimates that 6× speed-ups in Ethereum can be achieved if all available concurrency is exploited.
Yan, Qifei, Zhou, Yan, Zou, Li, Li, Yanling.  2020.  Evidence Fusion Method Based on Evidence Trust and Exponential Weighting. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:1851–1855.
In order to solve the problems of unreasonable fusion results of high conflict evidence and ineffectiveness of coefficient weighting in classical evidence theory, a method of evidence fusion based on evidence trust degree and exponential weighting is proposed. Firstly, the fusion factor is constructed based on probability distribution function and evidence trust degree, then the fusion factor is exponentially weighted by evidence weight, and then the evidence fusion rule based on fusion factor is constructed. The results show that this method can effectively solve the problems of unreasonable fusion results of high conflict evidence and ineffectiveness of coefficient weighting. It shows that the new fusion method are more reasonable, which provides a new idea and method for solving the problems in evidence theory.
Xing, Hang, Zhou, Chunjie, Ye, Xinhao, Zhu, Meipan.  2020.  An Edge-Cloud Synergy Integrated Security Decision-Making Method for Industrial Cyber-Physical Systems. 2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS). :989–995.
With the introduction of new technologies such as cloud computing and big data, the security issues of industrial cyber-physical systems (ICPSs) have become more complicated. Meanwhile, a lot of current security research lacks adaptation to industrial system upgrades. In this paper, an edge-cloud synergy framework for security decision-making is proposed, which takes advantage of the huge convenience and advantages brought by cloud computing and edge computing, and can make security decisions on a global perspective. Under this framework, a combination of Bayesian network-based risk assessment and stochastic game model-based security decision-making is proposed to generate an optimal defense strategy to minimize system losses. This method trains models in the clouds and infers at the edge computing nodes to achieve rapid defense strategy generation. Finally, a case study on the hardware-in-the-loop simulation platform proves the feasibility of the approach.
Jing, Si-Yuan, Yang, Jun.  2020.  Efficient attribute reduction based on rough sets and differential evolution algorithm. 2020 16th International Conference on Computational Intelligence and Security (CIS). :217–222.
Attribute reduction algorithms in rough set theory can be classified into two groups, i.e. heuristics algorithms and computational intelligence algorithms. The former has good search efficiency but it can not find the global optimal reduction. Conversely, the latter is possible to find global optimal reduction but usually suffers from premature convergence. To address this problem, this paper proposes a two-stage algorithm for finding high quality reduction. In first stage, a classical differential evolution algorithm is employed to rapidly approach the optimal solution. When the premature convergence is detected, a local search algorithm which is intuitively a forward-backward heuristics is launched to improve the quality of the reduction. Experiments were performed on six UCI data sets and the results show that the proposed algorithm can outperform the existing computational intelligence algorithms.
Averta, Giuseppe, Hogan, Neville.  2020.  Enhancing Robot-Environment Physical Interaction via Optimal Impedance Profiles. 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob). :973–980.
Physical interaction of robots with their environment is a challenging problem because of the exchanged forces. Hybrid position/force control schemes often exhibit problems during the contact phase, whereas impedance control appears to be more simple and reliable, especially when impedance is shaped to be energetically passive. Even if recent technologies enable shaping the impedance of a robot, how best to plan impedance parameters for task execution remains an open question. In this paper we present an optimization-based approach to plan not only the robot motion but also its desired end-effector mechanical impedance. We show how our methodology is able to take into account the transition from free motion to a contact condition, typical of physical interaction tasks. Results are presented for planar and three-dimensional open-chain manipulator arms. The compositionality of mechanical impedance is exploited to deal with kinematic redundancy and multi-arm manipulation.
2021-05-26
Wah Myint, Phyo Wah, Hlaing, Swe Zin, Htoon, Ei Chaw.  2020.  EAC: Encryption Access Control Scheme for Policy Revocation in Cloud Data. 2020 International Conference on Advanced Information Technologies (ICAIT). :182—187.

Since a lot of information is outsourcing into cloud servers, data confidentiality becomes a higher risk to service providers. To assure data security, Ciphertext Policy Attributes-Based Encryption (CP-ABE) is observed for the cloud environment. Because ciphertexts and secret keys are relying on attributes, the revocation issue becomes a challenge for CP-ABE. This paper proposes an encryption access control (EAC) scheme to fulfill policy revocation which covers both attribute and user revocation. When one of the attributes in an access policy is changed by the data owner, the authorized users should be updated immediately because the revoked users who have gained previous access policy can observe the ciphertext. Especially for data owners, four types of updating policy levels are predefined. By classifying those levels, each secret token key is distinctly generated for each level. Consequently, a new secret key is produced by hashing the secret token key. This paper analyzes the execution times of key generation, encryption, and decryption times between non-revocation and policy revocation cases. Performance analysis for policy revocation is also presented in this paper.

2021-05-25
Satılmış, Hami, Akleylek, Sedat.  2020.  Efficient Implementation of HashSieve Algorithm for Lattice-Based Cryptography. 2020 International Conference on Information Security and Cryptology (ISCTURKEY). :75—79.
The security of lattice-based cryptosystems that are secure for the post-quantum period is based on the difficulty of the shortest vector problem (SVP) and the closest vector problem (CVP). In the literature, many sieving algorithms are proposed to solve these hard problems. In this paper, efficient implementation of HashSieve sieving algorithm is discussed. A modular software library to have an efficient implementation of HashSieve algorithm is developed. Modular software library is used as an infrastructure in order for the HashSieve efficient implementation to be better than the sample in the literature (Laarhoven's standard HashSieve implementation). According to the experimental results, it is observed that HashSieve efficient implementation has a better running time than the example in the literature. It is concluded that both implementations are close to each other in terms of the memory space used.
Susilo, Willy, Duong, Dung Hoang, Le, Huy Quoc.  2020.  Efficient Post-quantum Identity-based Encryption with Equality Test. 2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS). :633—640.
Public key encryption with equality test (PKEET) enables the testing whether two ciphertexts encrypt the same message. Identity-based encryption with equality test (IBEET) simplify the certificate management of PKEET, which leads to many potential applications such as in smart city applications or Wireless Body Area Networks. Lee et al. (ePrint 2016) proposed a generic construction of IBEET scheme in the standard model utilising a 3-level hierachy IBE together with a one-time signature scheme, which can be instantiated in lattice setting. Duong et al. (ProvSec 2019) proposed the first direct construction of IBEET in standard model from lattices. However, their scheme achieve CPA security only. In this paper, we improve the Duong et al.'s construction by proposing an IBEET in standard model which achieves CCA2 security and with smaller ciphertext and public key size.
Ravikumar, Gelli, Hyder, Burhan, Govindarasu, Manimaran.  2020.  Efficient Modeling of IEC-61850 Logical Nodes in IEDs for Scalability in CPS Security Testbed. 2020 IEEE/PES Transmission and Distribution Conference and Exposition (T D). :1–5.

Though the deep penetration of cyber systems across the smart grid sub-domains enrich the operation of the wide-area protection, control, and smart grid applications, the stochastic nature of cyber-attacks by adversaries inflict their performance and the system operation. Various hardware-in-the-loop (HIL) cyber-physical system (CPS) testbeds have attempted to evaluate the cyberattack dynamics and power system perturbations for robust wide-area protection algorithms. However, physical resource constraints and modular integration designs have been significant barriers while modeling large-scale grid models (scalability) and have limited many of the CPS testbeds to either small-scale HIL environment or complete simulation environments. This paper proposes a meticulous design and efficient modeling of IEC-61850 logical nodes in physical relays to simulate large-scale grid models in a HIL real-time digital simulator environment integrated with industry-grade hardware and software systems for wide-area power system applications. The proposed meticulous design includes multi-breaker emulation in the physical relays, which extends the capacity of a physical relay to accommodate more number of CPS interfaces in the HIL CPS security testbed environment. We have used our existing HIL CPS security testbed to demonstrate scalability by the real-time performance of ten simultaneous IEEE-39 CPS grid models. The experiments demonstrated significant results by 100% real-time performance with zero overruns, and low latency while receiving and executing control signals from physical SEL relays via IEC-61850 and DNP-3 protocols to real-time digital simulator, substation remote terminal unit (RTU) software and supervisory control and data acquisition (SCADA) software at control center.

Chen, Yingquan, Wang, Yong.  2020.  Efficient Conversion Scheme Of Access Matrix In CP-ABE With Double Revocation Capability. 2020 IEEE International Conference on Progress in Informatics and Computing (PIC). :352–357.
To achieve a fine-grained access control function and guarantee the data confidentiality in the cloud storage environment, ciphertext policy attribute-based encryption (CP-ABE) has been widely implemented. However, due to the high computation and communication overhead, the nature of CP-ABE mechanism makes it difficult to be adopted in resource constrained terminals. Furthermore, the way of realizing varying levels of undo operations remains a problem. To this end, the access matrix that satisfies linear secret sharing scheme (LSSS) was optimized with Cauchy matrix, and then a user-level revocation scheme based on Chinese Remainder Theorem was proposed. Additionally, the attribute level revocation scheme which is based on the method of key encrypt key (KEK) and can help to reduce the storage overhead has also been improved.
Addae, Joyce, Radenkovic, Milena, Sun, Xu, Towey, Dave.  2016.  An extended perspective on cybersecurity education. 2016 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE). :367—369.
The current trend of ubiquitous device use whereby computing is becoming increasingly context-aware and personal, has created a growing concern for the protection of personal privacy. Privacy is an essential component of security, and there is a need to be able to secure personal computers and networks to minimize privacy depreciation within cyberspace. Human error has been recognized as playing a major role in security breaches: Hence technological solutions alone cannot adequately address the emerging security and privacy threats. Home users are particularly vulnerable to cybersecurity threats for a number of reasons, including a particularly important one that our research seeks to address: The lack of cybersecurity education. We argue that research seeking to address the human element of cybersecurity should not be limited only to the design of more usable technical security mechanisms, but should be extended and applied to offering appropriate training to all stakeholders within cyberspace.
2021-05-20
Kamalraj, R., Madhan, E.S., Ghamya, K., Bhargavi, V..  2020.  Enhance Safety and Security System for Children in School Campus by using Wearable Sensors. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :986—990.
Child security in the school campus is most important in building a good society. In and around the world the children are abused and killed also in sometimes by the people those who are not in good attitude in the school campus. To track and resolve such issues an enhanced security feature system is required. Hence in this paper an enhanced version of security system for children is proposed by using `Wearable Sensors'. In this proposed method two wearable sensors nodes such as `Staff Node' and `Student Node' are paired by using `Bluetooth' communication technology and Smart Watch technology is also used to communicate the Security Center or Processing Node for tracking them about their location and whether the two nodes are moved away from the classroom. If the child node is not moving for a long period then it may be notified by the center and they will inform the security officers near to the place. This proposed method may satisfy the need of school management about the staff movements with students and the behavior of students to avoid unexpected issues.
Maung, Maung, Pyone, April, Kiya, Hitoshi.  2020.  Encryption Inspired Adversarial Defense For Visual Classification. 2020 IEEE International Conference on Image Processing (ICIP). :1681—1685.
Conventional adversarial defenses reduce classification accuracy whether or not a model is under attacks. Moreover, most of image processing based defenses are defeated due to the problem of obfuscated gradients. In this paper, we propose a new adversarial defense which is a defensive transform for both training and test images inspired by perceptual image encryption methods. The proposed method utilizes a block-wise pixel shuffling method with a secret key. The experiments are carried out on both adaptive and non-adaptive maximum-norm bounded white-box attacks while considering obfuscated gradients. The results show that the proposed defense achieves high accuracy (91.55%) on clean images and (89.66%) on adversarial examples with noise distance of 8/255 on CFAR-10 dataset. Thus, the proposed defense outperforms state-of-the-art adversarial defenses including latent adversarial training, adversarial training and thermometer encoding.
2021-05-18
Zeng, Jingxiang, Nie, Xiaofan, Chen, Liwei, Li, Jinfeng, Du, Gewangzi, Shi, Gang.  2020.  An Efficient Vulnerability Extrapolation Using Similarity of Graph Kernel of PDGs. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1664–1671.
Discovering the potential vulnerabilities in software plays a crucial role in ensuring the security of computer system. This paper proposes a method that can assist security auditors with the analysis of source code. When security auditors identify new vulnerabilities, our method can be adopted to make a list of recommendations that may have the same vulnerabilities for the security auditors. Our method relies on graph representation to automatically extract the mode of PDG(program dependence graph, a structure composed of control dependence and data dependence). Besides, it can be applied to the vulnerability extrapolation scenario, thus reducing the amount of audit code. We worked on an open-source vulnerability test set called Juliet. According to the evaluation results, the clustering effect produced is satisfactory, so that the feature vectors extracted by the Graph2Vec model are applied to labeling and supervised learning indicators are adopted to assess the model for its ability to extract features. On a total of 12,000 small data sets, the training score of the model can reach up to 99.2%, and the test score can reach a maximum of 85.2%. Finally, the recommendation effect of our work is verified as satisfactory.
Iorga, Denis, Corlătescu, Dragos, Grigorescu, Octavian, Săndescu, Cristian, Dascălu, Mihai, Rughiniş, Razvan.  2020.  Early Detection of Vulnerabilities from News Websites using Machine Learning Models. 2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet). :1–6.
The drawbacks of traditional methods of cybernetic vulnerability detection relate to the required time to identify new threats, to register them in the Common Vulnerabilities and Exposures (CVE) records, and to score them with the Common Vulnerabilities Scoring System (CVSS). These problems can be mitigated by early vulnerability detection systems relying on social media and open-source data. This paper presents a model that aims to identify emerging cybernetic vulnerabilities in cybersecurity news articles, as part of a system for automatic detection of early cybernetic threats using Open Source Intelligence (OSINT). Three machine learning models were trained on a novel dataset of 1000 labeled news articles to create a strong baseline for classifying cybersecurity articles as relevant (i.e., introducing new security threats), or irrelevant: Support Vector Machines, a Multinomial Naïve Bayes classifier, and a finetuned BERT model. The BERT model obtained the best performance with a mean accuracy of 88.45% on the test dataset. Our experiments support the conclusion that Natural Language Processing (NLP) models are an appropriate choice for early vulnerability detection systems in order to extract relevant information from cybersecurity news articles.