Biblio
The evolution of the enterprise computing landscape towards emerging trends such as fog/edge computing and the Industrial Internet of Things (IIoT) are leading to a change of approach to securing computer networks to deal with challenges such as mobility, virtualized infrastructures, dynamic and heterogeneous user contexts and transaction-based interactions. The uncertainty introduced by such dynamicity introduces greater uncertainty into the access control process and motivates the need for risk-based access control decision making. Thus, the traditional perimeter-based security paradigm is increasingly being abandoned in favour of a so called "zero trust networking" (ZTN). In ZTN networks are partitioned into zones with different levels of trust required to access the zone resources depending on the assets protected by the zone. All accesses to sensitive information is subject to rigorous access control based on user and device profile and context. In this paper we outline a policy enforcement framework to address many of open challenges for risk-based access control for ZTN. We specify the design of required policy languages including a generic firewall policy language to express firewall rules. We design a mechanism to map these rules to specific firewall syntax and to install the rules on the firewall. We show the viability of our design with a small proof-of-concept.
Modern malware applies a rich arsenal of evasion techniques to render dynamic analysis ineffective. In turn, dynamic analysis tools take great pains to hide themselves from malware; typically this entails trying to be as faithful as possible to the behavior of a real run. We present a novel approach to malware analysis that turns this idea on its head, using an extreme abstraction of the operating system that intentionally strays from real behavior. The key insight is that the presence of malicious behavior is sufficient evidence of malicious intent, even if the path taken is not one that could occur during a real run of the sample. By exploring multiple paths in a system that only approximates the behavior of a real system, we can discover behavior that would often be hard to elicit otherwise. We aggregate features from multiple paths and use a funnel-like configuration of machine learning classifiers to achieve high accuracy without incurring too much of a performance penalty. We describe our system, TAMALES (The Abstract Malware Analysis LEarning System), in detail and present machine learning results using a 330K sample set showing an FPR (False Positive Rate) of 0.10% with a TPR (True Positive Rate) of 99.11%, demonstrating that extreme abstraction can be extraordinarily effective in providing data that allows a classifier to accurately detect malware.
Industrial control systems (ICS) are key enabling systems that drive the productivity and efficiency of omnipresent industries such as power, gas, water treatment, transportation, and manufacturing. These systems consist of interconnected components that communicate over industrial networks using industrial protocols such as the Common Industrial Protocol (CIP). CIP is one of the most commonly used network-based process control protocols, and utilizes an object-oriented communication structure for device to device interaction. Due to this object-oriented structure, CIP communication reveals detailed information about the devices, the communication patterns, and the system, providing an in-depth view of the system. The details from this in-depth system perspective can be utilized as part of a system cybersecurity or discovery approach. However, due to the variety of commands, corresponding parameters, and variable layer structure of the CIP network layer, processing this layer is a challenging task. This paper presents a tool, Advanced CIP Evaluator (ACE), which passively processes the CIP communication layer and automatically extracts device, communication, and system information from observed network traffic. ACE was tested and verified using a representative ICS power generation testbed. Since ACE operates passively, without generating any network traffic of its own, system operations are not disturbed. This novel tool provides ICS information, such as networked devices, communication patterns, and system operation, at a depth and breadth that is unique compared with other known tools.
Attackers create new threats and constantly change their behavior to mislead security systems. In this paper, we propose an adaptive threat detection architecture that trains its detection models in real time. The major contributions of the proposed architecture are: i) gather data about zero-day attacks and attacker behavior using honeypots in the network; ii) process data in real time and achieve high processing throughput through detection schemes implemented with stream processing technology; iii) use of two real datasets to evaluate our detection schemes, the first from a major network operator in Brazil and the other created in our lab; iv) design and development of adaptive detection schemes including both online trained supervised classification schemes that update their parameters in real time and learn zero-day threats from the honeypots, and online trained unsupervised anomaly detection schemes that model legitimate user behavior and adapt to changes. The performance evaluation results show that proposed architecture maintains an excellent trade-off between threat detection and false positive rates and achieves high classification accuracy of more than 90%, even with legitimate behavior changes and zero-day threats.
The Agave Platform first appeared in 2011 as a pilot project for the iPlant Collaborative [11]. In its first two years, Foundation saw over 40% growth per month, supporting 1000+ clients, 600+ applications, 4 HPC systems at 3 centers across the US. It also gained users outside of plant biology. To better serve the needs of the general open science community, we rewrote Foundation as a scalable, cloud native application and named it the Agave Platform. In this paper we present the Agave Platform, a Science-as-a-Service (ScaaS) platform for reproducible science. We provide a brief history and technical overview of the project, and highlight three case studies leveraging the platform to create synergistic value for their users.
Network Management is a critical process for an enterprise to configure and monitor the network devices using cost effective methods. It is imperative for it to be robust and free from adversarial or accidental security flaws. With the advent of cloud computing and increasing demands for centralized network control, conventional management protocols like SNMP appear inadequate and newer techniques like NMDA and NETCONF have been invented. However, unlike SNMP which underwent improvements concentrating on security, the new data management and storage techniques have not been scrutinized for the inherent security flaws. In this paper, we identify several vulnerabilities in the widely used critical infrastructures which leverage the Network Management Datastore Architecture design (NMDA). Software Defined Networking (SDN), a proponent of NMDA, heavily relies on its datastores to program and manage the network. We base our research on the security challenges put forth by the existing datastore's design as implemented by the SDN controllers. The vulnerabilities identified in this work have a direct impact on the controllers like OpenDayLight, Open Network Operating System and their proprietary implementations (by CISCO, Ericsson, RedHat, Brocade, Juniper, etc). Using our threat detection methodology, we demonstrate how the NMDA-based implementations are vulnerable to attacks which compromise availability, integrity, and confidentiality of the network. We finally propose defense measures to address the security threats in the existing design and discuss the challenges faced while employing these countermeasures.
The term "Cyber Physical System" (CPS) has been used in the recent years to describe a system type, which makes use of powerful communication networks to functionally combine systems that were previously thought of as independent. The common theme of CPSs is that through communication, CPSs can make decisions together and achieve common goals. Yet, in contrast to traditional system types such as embedded systems, the functional dependence between CPSs can change dynamically at runtime. Hence, their functional dependence may cause unforeseen runtime behavior, e.g., when a CPS becomes unavailable, but others depend on its correct operation. During development of any individual CPS, this runtime behavior must hence be predicted, and the system must be developed with the appropriate level of robustness. Since at present, research is mainly concerned with the impact of functional dependence in CPS on development, the impact on runtime behavior is mere conjecture. In this paper, we present AirborneCPS, a simulation tool for functionally dependent CPSs which simulates runtime behavior and aids in the identification of undesired functional interaction.
Exfiltrating sensitive information from smartphones has become one of the most significant security threats. We have built a system to identify HTTP-based information exfiltration of malicious Android applications. In this paper, we discuss the method to track the propagation of sensitive information in Android applications using static taint analysis. We have studied the leaked information, destinations to which information is exfiltrated, and their correlations with types of sensitive information. The analysis results based on 578 malicious Android applications have revealed that a significant portion of these applications are interested in identity-related sensitive information. The vast majority of malicious applications leak multiple types of sensitive information. We have also identified servers associated with three country codes including CN, US, and SG are most active in collecting sensitive information. The analysis results have also demonstrated that a wide range of non-default ports are used by suspicious URLs.
This work investigates the fundamental constraints of anonymous communication (AC) protocols. We analyze the relationship between bandwidth overhead, latency overhead, and sender anonymity or recipient anonymity against the global passive (network-level) adversary. We confirm the trilemma that an AC protocol can only achieve two out of the following three properties: strong anonymity (i.e., anonymity up to a negligible chance), low bandwidth overhead, and low latency overhead. We further study anonymity against a stronger global passive adversary that can additionally passively compromise some of the AC protocol nodes. For a given number of compromised nodes, we derive necessary constraints between bandwidth and latency overhead whose violation make it impossible for an AC protocol to achieve strong anonymity. We analyze prominent AC protocols from the literature and depict to which extent those satisfy our necessary constraints. Our fundamental necessary constraints offer a guideline not only for improving existing AC systems but also for designing novel AC protocols with non-traditional bandwidth and latency overhead choices.