Biblio

Found 4093 results

Filters: First Letter Of Last Name is L  [Clear All Filters]
2019-02-13
Sayakkara, Asanka, Le-Khac, Nhien-An, Scanlon, Mark.  2018.  Accuracy Enhancement of Electromagnetic Side-Channel Attacks on Computer Monitors. Proceedings of the 13th International Conference on Availability, Reliability and Security. :15:1–15:9.
Electromagnetic noise emitted from running computer displays modulates information about the picture frames being displayed on screen. Attacks have been demonstrated on eavesdropping computer displays by utilising these emissions as a side-channel vector. The accuracy of reconstructing a screen image depends on the emission sampling rate and bandwidth of the attackers signal acquisition hardware. The cost of radio frequency acquisition hardware increases with increased supported frequency range and bandwidth. A number of enthusiast-level, affordable software defined radio equipment solutions are currently available facilitating a number of radio-focused attacks at a more reasonable price point. This work investigates three accuracy influencing factors, other than the sample rate and bandwidth, namely noise removal, image blending, and image quality adjustments, that affect the accuracy of monitor image reconstruction through electromagnetic side-channel attacks.
2019-12-16
Lin, Ping-Hsien, Chang, Yu-Ming, Li, Yung-Chun, Wang, Wei-Chen, Ho, Chien-Chung, Chang, Yuan-Hao.  2018.  Achieving Fast Sanitization with Zero Live Data Copy for MLC Flash Memory. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1–8.
As data security has become the major concern in modern storage systems with low-cost multi-level-cell (MLC) flash memories, it is not trivial to realize data sanitization in such a system. Even though some existing works employ the encryption or the built-in erase to achieve this requirement, they still suffer the risk of being deciphered or the issue of performance degradation. In contrast to the existing work, a fast sanitization scheme is proposed to provide the highest degree of security for data sanitization; that is, every old version of data could be immediately sanitized with zero live-data-copy overhead once the new version of data is created/written. In particular, this scheme further considers the reliability issue of MLC flash memories; the proposed scheme includes a one-shot sanitization design to minimize the disturbance during data sanitization. The feasibility and the capability of the proposed scheme were evaluated through extensive experiments based on real flash chips. The results demonstrate that this scheme can achieve the data sanitization with zero live-data-copy, where performance overhead is less than 1%.
2020-07-24
Dong, Qiuxiang, Huang, Dijiang, Luo, Jim, Kang, Myong.  2018.  Achieving Fine-Grained Access Control with Discretionary User Revocation over Cloud Data. 2018 IEEE Conference on Communications and Network Security (CNS). :1—9.
Cloud storage solutions have gained momentum in recent years. However, cloud servers can not be fully trusted. Data access control have becomes one of the main impediments for further adoption. One appealing approach is to incorporate the access control into encrypted data, thus removing the need to trust the cloud servers. Among existing cryptographic solutions, Ciphertext Policy Attribute-Based Encryption (CP-ABE) is well suited for fine-grained data access control in cloud storage. As promising as it is, user revocation is a cumbersome problem that impedes its wide application. To address this issue, we design an access control system called DUR-CP-ABE, which implements identity-based User Revocation in a data owner Discretionary way. In short, the proposed solution provides the following salient features. First, user revocation enforcement is based on the discretion of the data owner, thus providing more flexibility. Second, no private key updates are needed when user revocation occurs. Third, the proposed scheme allows for group revocation of affiliated users in a batch operation. To the best of our knowledge, DUR-CP-ABE is the first CP-ABE solution to provide affiliation- based batch revocation functionality, which fits naturally into organizations' Identity and Access Management (IAM) structure. The analysis shows that the proposed access control system is provably secure and efficient in terms of computation, communi- cation and storage.
Li, Chunhua, He, Jinbiao, Lei, Cheng, Guo, Chan, Zhou, Ke.  2018.  Achieving Privacy-Preserving CP-ABE Access Control with Multi-Cloud. 2018 IEEE Intl Conf on Parallel Distributed Processing with Applications, Ubiquitous Computing Communications, Big Data Cloud Computing, Social Computing Networking, Sustainable Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). :801—808.
Cloud storage service makes it very convenient for people to access and share data. At the same time, the confidentiality and privacy of user data is also facing great challenges. Ciphertext-Policy Attribute-Based Encryption (CP-ABE) scheme is widely considered to be the most suitable security access control technology for cloud storage environment. Aiming at the problem of privacy leakage caused by single-cloud CP-ABE which is commonly adopted in the current schemes, this paper proposes a privacy-preserving CP-ABE access control scheme using multi-cloud architecture. By improving the traditional CP-ABE algorithm and introducing a proxy to cut the user's private key, it can ensure that only a part of the user attribute set can be obtained by a single cloud, which effectively protects the privacy of user attributes. Meanwhile, the intermediate logical structure of the access policy tree is stored in proxy, and only the leaf node information is stored in the ciphertext, which effectively protects the privacy of the access policy. Security analysis shows that our scheme is effective against replay and man-in-the-middle attacks, as well as user collusion attack. Experimental results also demonstrates that the multi-cloud CP-ABE does not significantly increase the overhead of storage and encryption compared to the single cloud scheme, but the access control overhead decreases as the number of clouds increases. When the access policy is expressed with a AND gate structure, the decryption overhead is obviously less than that of a single cloud environment.
2020-09-28
Liu, Qin, Pei, Shuyu, Xie, Kang, Wu, Jie, Peng, Tao, Wang, Guojun.  2018.  Achieving Secure and Effective Search Services in Cloud Computing. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1386–1391.
One critical challenge of today's cloud services is how to provide an effective search service while preserving user privacy. In this paper, we propose a wildcard-based multi-keyword fuzzy search (WMFS) scheme over the encrypted data, which tolerates keyword misspellings by exploiting the indecomposable property of primes. Compared with existing secure fuzzy search schemes, our WMFS scheme has the following merits: 1) Efficiency. It eliminates the requirement of a predefined dictionary and thus supports updates efficiently. 2) High accuracy. It eliminates the false positive and false negative introduced by specific data structures and thus allows the user to retrieve files as accurate as possible. 3) Flexibility. It gives the user great flexibility to specify different search patterns including keyword and substring matching. Extensive experiments on a real data set demonstrate the effectiveness and efficiency of our scheme.
2019-01-21
Han, K., Li, S., Wang, Z., Yang, X..  2018.  Actuator deception attack detection and estimation for a class of nonlinear systems. 2018 37th Chinese Control Conference (CCC). :5675–5680.
In this paper, an novel active safety monitoring system is constructed for a class of nonlinear discrete-time systems. The considered nonlinear system is subjected to unknown inputs, external disturbances, and possible unknown deception attacks, simultaneously. In order to secure the safety of control systems, an active attack estimator composed of state/output estimator, attack detector and attack/attacker action estimator is constructed to monitor the system running status. The analysis and synthesis of attack estimator is performed in the H∞performance optimization manner. The off-line calculation and on-line application of active attack estimator are summarized simultaneously. The effectiveness of the proposed results is finally verified by an numerical example.
2019-01-16
Akhtar, U., Lee, S..  2018.  Adaptive Cache Replacement in Efficiently Querying Semantic Big Data. 2018 IEEE International Conference on Web Services (ICWS). :367–370.
This paper addresses the problem of querying Knowledge bases (KBs) that store semantic big data. For efficiently querying data the most important factor is cache replacement policy, which determines the overall query response. As cache is limited in size, less frequently accessed data should be removed to provide more space to hot triples (frequently accessed). So, to achieve a similar performance to RDBMS, we proposed an Adaptive Cache Replacement (ACR) policy that predict the hot triples from query log. Moreover, performance bottleneck of triplestore, makes realworld application difficult. To achieve a closer performance similar to RDBMS, we have proposed an Adaptive Cache Replacement (ACR) policy that predict the hot triples from query log. Our proposed algorithm effectively replaces cache with high accuracy. To implement cache replacement policy, we have applied exponential smoothing, a forecast method, to collect most frequently accessed triples. The evaluation result shows that the proposed scheme outperforms the existing cache replacement policies, such as LRU (least recently used) and LFU (least frequently used), in terms of higher hit rates and less time overhead.
2019-03-18
Ju, Peizhong, Lin, Xiaojun.  2018.  Adversarial Attacks to Distributed Voltage Control in Power Distribution Networks with DERs. Proceedings of the Ninth International Conference on Future Energy Systems. :291–302.
It has been recently proposed that the reactive power injection of distributed energy resources (DERs) can be used to regulate the voltage across the power distribution network, and simple distributed control laws have been recently developed in the literature for performing such distributed Volt/VAR control. However, enabling the reactive-power injection capability of DERs also opens the door for potential adversarial attacks. Specifically, the adversary can compromise a subset of the DERs and use their reactive power to disrupt the voltage profile across the distribution network. In this paper, we study the potential damage (in terms of the voltage disruption) of such adversarial attacks and how to mitigate the damage by controlling the allowable range of reactive power injection at each bus. Somewhat surprisingly and contrary to the intuition that the reactive power injection at legitimate buses should help mitigating the voltage disruption inflicted by the adversary, we demonstrate that an intelligent attacker can actually exploit the response of the legitimate buses to amplify the damage by two times. Such a higher level of damage can be attained even when the adversary has no information about the network topology. We then formulate an optimization problem to limit the potential damage of such adversarial attacks. Our formulation sets the range of the reactive power injection on each bus so that the damage by the adversary is minimized, subject to the constraint that the voltage mismatch (without attack) can still be maintained within a given threshold under an uncertainty set of external inputs. Numerical results demonstrate the validity of our analysis and the effectiveness of our approach to mitigate the damage caused by such attacks.
2019-02-25
Liu, Ninghao, Yang, Hongxia, Hu, Xia.  2018.  Adversarial Detection with Model Interpretation. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. :1803–1811.
Machine learning (ML) systems have been increasingly applied in web security applications such as spammer detection, malware detection and fraud detection. These applications have an intrinsic adversarial nature where intelligent attackers can adaptively change their behaviors to avoid being detected by the deployed detectors. Existing efforts against adversaries are usually limited by the type of applied ML models or the specific applications such as image classification. Additionally, the working mechanisms of ML models usually cannot be well understood by users, which in turn impede them from understanding the vulnerabilities of models nor improving their robustness. To bridge the gap, in this paper, we propose to investigate whether model interpretation could potentially help adversarial detection. Specifically, we develop a novel adversary-resistant detection framework by utilizing the interpretation of ML models. The interpretation process explains the mechanism of how the target ML model makes prediction for a given instance, thus providing more insights for crafting adversarial samples. The robustness of detectors is then improved through adversarial training with the adversarial samples. A data-driven method is also developed to empirically estimate costs of adversaries in feature manipulation. Our approach is model-agnostic and can be applied to various types of classification models. Our experimental results on two real-world datasets demonstrate the effectiveness of interpretation-based attacks and how estimated feature manipulation cost would affect the behavior of adversaries.
2019-05-20
Linna, Fan, Xiaofeng, Song, Weiwei, Zhao, Haodan, Ran, Jingzhi, Li, Deyang, Shi, Suining, Mu, Tao, Qi.  2018.  An Anonymous Authentication Mechanism Based on Kerberos and HIBC. Proceedings of the 10th International Conference on Education Technology and Computers. :392–396.
With the development of the grid and more and more attention attached to the privacy security, there is an urgent need of a secure anonymous authentication mechanism. In order to meet this requirement, we proposed an anonymous authentication mechanism based on Kerberos and HIBC, which is called KHIBC. It can meet the demand of authentication of Grid. At the same time, it can also protect the users' identity through anonymous method. Through analysis, KHIBC can meet the requirement of anonymity, mutual authentication, traceability and so on.
2019-02-08
Angelini, Marco, Bonomi, Silvia, Borzi, Emanuele, Pozzo, Antonella Del, Lenti, Simone, Santucci, Giuseppe.  2018.  An Attack Graph-Based On-Line Multi-Step Attack Detector. Proceedings of the 19th International Conference on Distributed Computing and Networking. :40:1-40:10.
Modern distributed systems are characterized by complex deployment designed to ensure high availability through replication and diversity, to tolerate the presence of failures and to limit the possibility of successful compromising. However, software is not free from bugs that generate vulnerabilities that could be exploited by an attacker through multiple steps. This paper presents an attack-graph based multi-step attack detector aiming at detecting a possible on-going attack early enough to take proper countermeasures through; a Visualization interfaced with the described attack detector presents the security operator with the relevant pieces of information, allowing a better comprehension of the network status and providing assistance in managing attack situations (i.e., reactive analysis mode). We first propose an architecture and then we present the implementation of each building block. Finally, we provide an evaluation of the proposed approach aimed at highlighting the existing trade-off between accuracy of the detection and detection time.
2020-01-02
Aslan, Ça\u grı B., Sa\u glam, Rahime Belen, Li, Shujun.  2018.  Automatic Detection of Cyber Security Related Accounts on Online Social Networks: Twitter As an Example. Proceedings of the 9th International Conference on Social Media and Society. :236–240.
Recent studies have revealed that cyber criminals tend to exchange knowledge about cyber attacks in online social networks (OSNs). Cyber security experts are another set of information providers on OSNs who frequently share information about cyber security incidents and their personal opinions and analyses. Therefore, in order to improve our knowledge about evolving cyber attacks and the underlying human behavior for different purposes (e.g., crime investigation, understanding career development of cyber criminals and cyber security professionals, detection of impeding cyber attacks), it will be very useful to detect cyber security related accounts on OSNs automatically, and monitor their activities. This paper reports our preliminarywork on automatic detection of cyber security related accounts on OSNs using Twitter as an example. Three machine learning based classification algorithms were applied and compared: decision trees, random forests, and SVM (support vector machines). Experimental results showed that both decision trees and random forests had performed well with an overall accuracy over 95%, and when random forests were used with behavioral features the accuracy had reached as high as 97.877%.
2019-04-01
Peters, Travis, Lal, Reshma, Varadarajan, Srikanth, Pappachan, Pradeep, Kotz, David.  2018.  BASTION-SGX: Bluetooth and Architectural Support for Trusted I/O on SGX. Proceedings of the 7th International Workshop on Hardware and Architectural Support for Security and Privacy. :3:1–3:9.
This paper presents work towards realizing architectural support for Bluetooth Trusted I/O on SGX-enabled platforms, with the goal of providing I/O data protection that does not rely on system software security. Indeed, we are primarily concerned with protecting I/O from all software adversaries, including privileged software. In this paper we describe the challenges in designing and implementing Trusted I/O at the architectural level for Bluetooth. We propose solutions to these challenges. In addition, we describe our proof-of-concept work that extends existing over-the-air Bluetooth security all the way to an SGX enclave by securing user data between the Bluetooth Controller and an SGX enclave.
2019-05-08
Le, Duc C., Khanchi, Sara, Zincir-Heywood, A. Nur, Heywood, Malcolm I..  2018.  Benchmarking Evolutionary Computation Approaches to Insider Threat Detection. Proceedings of the Genetic and Evolutionary Computation Conference. :1286–1293.
Insider threat detection represents a challenging problem to companies and organizations where malicious actions are performed by authorized users. This is a highly skewed data problem, where the huge class imbalance makes the adaptation of learning algorithms to the real world context very difficult. In this work, applications of genetic programming (GP) and stream active learning are evaluated for insider threat detection. Linear GP with lexicase/multi-objective selection is employed to address the problem under a stationary data assumption. Moreover, streaming GP is employed to address the problem under a non-stationary data assumption. Experiments conducted on a publicly available corporate data set show the capability of the approaches in dealing with extreme class imbalance, stream learning and adaptation to the real world context.
2019-01-16
Lewis, Stephen G., Palumbo, Timothy.  2018.  BitLocker Full-Disk Encryption: Four Years Later. Proceedings of the 2018 ACM on SIGUCCS Annual Conference. :147–150.
Microsoft BitLocker full-disk encryption has been widely implemented at Lehigh University since 2014 on both laptop and desktop computers. This retrospective review will summarize BitLocker's selection factors, initial testing, mass deployment, and important lessons learned. Additionally, this review will also discuss the university's transition to Windows 10 and how it positively impacted the use of BitLocker.
2019-09-23
Chen, W., Liang, X., Li, J., Qin, H., Mu, Y., Wang, J..  2018.  Blockchain Based Provenance Sharing of Scientific Workflows. 2018 IEEE International Conference on Big Data (Big Data). :3814–3820.
In a research community, the provenance sharing of scientific workflows can enhance distributed research cooperation, experiment reproducibility verification and experiment repeatedly doing. Considering that scientists in such a community are often in a loose relation and distributed geographically, traditional centralized provenance sharing architectures have shown their disadvantages in poor trustworthiness, reliabilities and efficiency. Additionally, they are also difficult to protect the rights and interests of data providers. All these have been largely hindering the willings of distributed scientists to share their workflow provenance. Considering the big advantages of blockchain in decentralization, trustworthiness and high reliability, an approach to sharing scientific workflow provenance based on blockchain in a research community is proposed. To make the approach more practical, provenance is handled on-chain and original data is delivered off-chain. A kind of block structure to support efficient provenance storing and retrieving is designed, and an algorithm for scientists to search workflow segments from provenance as well as an algorithm for experiments backtracking are provided to enhance the experiment result sharing, save computing resource and time cost by avoiding repeated experiments as far as possible. Analyses show that the approach is efficient and effective.
2019-01-16
Lin, Feng, Cho, Kun Woo, Song, Chen, Xu, Wenyao, Jin, Zhanpeng.  2018.  Brain Password: A Secure and Truly Cancelable Brain Biometrics for Smart Headwear. Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services. :296–309.
In recent years, biometric techniques (e.g., fingerprint or iris) are increasingly integrated into mobile devices to offer security advantages over traditional practices (e.g., passwords and PINs) due to their ease of use in user authentication. However, existing biometric systems are with controversy: once divulged, they are compromised forever - no one can grow a new fingerprint or iris. This work explores a truly cancelable brain-based biometric system for mobile platforms (e.g., smart headwear). Specifically, we present a new psychophysiological protocol via non-volitional brain response for trustworthy mobile authentication, with an application example of smart headwear. Particularly, we address the following research challenges in mobile biometrics with a theoretical and empirical combined manner: (1) how to generate reliable brain responses with sophisticated visual stimuli; (2) how to acquire the distinct brain response and analyze unique features in the mobile platform; (3) how to reset and change brain biometrics when the current biometric credential is divulged. To evaluate the proposed solution, we conducted a pilot study and achieved an f -score accuracy of 95.46% and equal error rate (EER) of 2.503%, thereby demonstrating the potential feasibility of neurofeedback based biometrics for smart headwear. Furthermore, we perform the cancelability study and the longitudinal study, respectively, to show the effectiveness and usability of our new proposed mobile biometric system. To the best of our knowledge, it is the first in-depth research study on truly cancelable brain biometrics for secure mobile authentication.
2019-02-14
Liu, Tianren, Vaikuntanathan, Vinod.  2018.  Breaking the Circuit-Size Barrier in Secret Sharing. Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing. :699-708.
We study secret sharing schemes for general (non-threshold) access structures. A general secret sharing scheme for n parties is associated to a monotone function F:\0,1\n$\rightarrow$\0,1\. In such a scheme, a dealer distributes shares of a secret s among n parties. Any subset of parties T $\subseteq$ [n] should be able to put together their shares and reconstruct the secret s if F(T)=1, and should have no information about s if F(T)=0. One of the major long-standing questions in information-theoretic cryptography is to minimize the (total) size of the shares in a secret-sharing scheme for arbitrary monotone functions F. There is a large gap between lower and upper bounds for secret sharing. The best known scheme for general F has shares of size 2n-o(n), but the best lower bound is $Ømega$(n2/logn). Indeed, the exponential share size is a direct result of the fact that in all known secret-sharing schemes, the share size grows with the size of a circuit (or formula, or monotone span program) for F. Indeed, several researchers have suggested the existence of a representation size barrier which implies that the right answer is closer to the upper bound, namely, 2n-o(n). In this work, we overcome this barrier by constructing a secret sharing scheme for any access structure with shares of size 20.994n and a linear secret sharing scheme for any access structure with shares of size 20.999n. As a contribution of independent interest, we also construct a secret sharing scheme with shares of size 2Õ($\surd$n) for 2n n/2 monotone access structures, out of a total of 2n n/2$\cdot$ (1+O(logn/n)) of them. Our construction builds on recent works that construct better protocols for the conditional disclosure of secrets (CDS) problem.
2019-12-30
Hallman, Roger A., Laine, Kim, Dai, Wei, Gama, Nicolas, Malozemoff, Alex J., Polyakov, Yuriy, Carpov, Sergiu.  2018.  Building Applications with Homomorphic Encryption. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :2160–2162.
In 2009, Craig Gentry introduced the first "fully" homomorphic encryption scheme allowing arbitrary circuits to be evaluated on encrypted data. Homomorphic encryption is a very powerful cryptographic primitive, though it has often been viewed by practitioners as too inefficient for practical applications. However, the performance of these encryption schemes has come a long way from that of Gentry's original work: there are now several well-maintained libraries implementing homomorphic encryption schemes and protocols demonstrating impressive performance results, alongside an ongoing standardization effort by the community. In this tutorial we survey the existing homomorphic encryption landscape, providing both a general overview of the state of the art, as well as a deeper dive into several of the existing libraries. We aim to provide a thorough introduction to homomorphic encryption accessible by the broader computer security community. Several of the presenters are core developers of well-known publicly available homomorphic encryption libraries, and organizers of the homomorphic encryption standardization effort \textbackslashtextbackslashhrefhttp://homomorphicencryption.org/. This tutorial is targeted at application developers, security researchers, privacy engineers, graduate students, and anyone else interested in learning the basics of modern homomorphic encryption.The tutorial is divided into two parts: Part I is accessible by everyone comfortable with basic college-level math; Part II will cover more advanced topics, including descriptions of some of the different homomorphic encryption schemes and libraries, concrete example applications and code samples, and a deeper discussion on implementation challenges. Part II requires the audience to be familiar with modern C++.
2020-01-06
Zhang, Zhikun, Wang, Tianhao, Li, Ninghui, He, Shibo, Chen, Jiming.  2018.  CALM: Consistent Adaptive Local Marginal for Marginal Release Under Local Differential Privacy. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :212–229.
Marginal tables are the workhorse of capturing the correlations among a set of attributes. We consider the problem of constructing marginal tables given a set of user's multi-dimensional data while satisfying Local Differential Privacy (LDP), a privacy notion that protects individual user's privacy without relying on a trusted third party. Existing works on this problem perform poorly in the high-dimensional setting; even worse, some incur very expensive computational overhead. In this paper, we propose CALM, Consistent Adaptive Local Marginal, that takes advantage of the careful challenge analysis and performs consistently better than existing methods. More importantly, CALM can scale well with large data dimensions and marginal sizes. We conduct extensive experiments on several real world datasets. Experimental results demonstrate the effectiveness and efficiency of CALM over existing methods.
2019-09-26
Blömer, Johannes, Löken, Nils.  2018.  Cloud Architectures for Searchable Encryption. Proceedings of the 13th International Conference on Availability, Reliability and Security. :25:1-25:10.
Blömer et al. have presented a cloud architecture for enabling fine-grained cryptographic access control to data in the cloud. The architecture is intended to provide this service to large-scale orgnaizations. We revisit the cloud architecture, and enrich it with searchable encryption. In the process, we identify some shortcomings of Blömer et al.'s architecture, that prevent many cryptographic primitives from being implemented within the framework of the architecture. Subsequently, we propose fixes to these issues. As a result, we are able to propose a concrete instantiation of searchable encryption, in the form of Bost's $Σ$o$\phi$o$ς$ scheme, in Blömer et al.'s architecture. Moreover, with our fixes, other primitives can be adapted to the architecture as well.
2020-01-06
Lee, Jaewoo, Kifer, Daniel.  2018.  Concentrated Differentially Private Gradient Descent with Adaptive per-Iteration Privacy Budget. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. :1656–1665.
Iterative algorithms, like gradient descent, are common tools for solving a variety of problems, such as model fitting. For this reason, there is interest in creating differentially private versions of them. However, their conversion to differentially private algorithms is often naive. For instance, a fixed number of iterations are chosen, the privacy budget is split evenly among them, and at each iteration, parameters are updated with a noisy gradient. In this paper, we show that gradient-based algorithms can be improved by a more careful allocation of privacy budget per iteration. Intuitively, at the beginning of the optimization, gradients are expected to be large, so that they do not need to be measured as accurately. However, as the parameters approach their optimal values, the gradients decrease and hence need to be measured more accurately. We add a basic line-search capability that helps the algorithm decide when more accurate gradient measurements are necessary. Our gradient descent algorithm works with the recently introduced zCDP version of differential privacy. It outperforms prior algorithms for model fitting and is competitive with the state-of-the-art for \$(ε,δ)\$-differential privacy, a strictly weaker definition than zCDP.
2019-04-05
Li, X., Cui, X., Shi, L., Liu, C., Wang, X..  2018.  Constructing Browser Fingerprint Tracking Chain Based on LSTM Model. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :213-218.
Web attacks have increased rapidly in recent years. However, traditional methods are useless to track web attackers. Browser fingerprint, as a stateless tracking technique, can be used to solve this problem. Given browser fingerprint changes easily and frequently, it is easy to lose track. Therefore, we need to improve the stability of browser fingerprint by linking the new one to the previous chain. In this paper, we propose LSTM model to learn the potential relationship of browser fingerprint evolution. In addition, we adjust the input feature vector to time series and construct training set to train the model. The results show that our model can construct the tracking chain perfectly well with average ownership up to 99.3%.
2019-01-16
Abdelwahed, N., Letaifa, A. Ben, Asmi, S. El.  2018.  Content Based Algorithm Aiming to Improve the WEB\_QoE Over SDN Networks. 2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA). :153–158.
Since the 1990s, the concept of QoE has been increasingly present and many scientists take it into account within different fields of application. Taking for example the case of video streaming, the QoE has been well studied in this case while for the web the study of its QoE is relatively neglected. The Quality of Experience (QoE) is the set of objective and subjective characteristics that satisfy retain or give confidence to a user through the life cycle of a service. There are researches that take the different measurement metrics of QoE as a subject, others attack new ways to improve this QoE in order to satisfy the customer and gain his loyalty. In this paper, we focus on the web QoE that is declined by researches despite its great importance given the complexity of new web pages and their utility that is increasingly critical. The wealth of new web pages in images, videos, audios etc. and their growing significance prompt us to write this paper, in which we discuss a new method that aims to improve the web QoE in a software-defined network (SDN). Our proposed method consists in automating and making more flexible the management of the QoE improvement of the web pages and this by writing an algorithm that, depending on the case, chooses the necessary treatment to improve the web QoE of the page concerned and using both web prefetching and caching to accelerate the data transfer when the user asks for it. The first part of the paper discusses the advantages and disadvantages of existing works. In the second part we propose an automatic algorithm that treats each case with the appropriate solution that guarantees its best performance. The last part is devoted to the evaluation of the performance.
2020-11-30
Guan, L., Lin, J., Ma, Z., Luo, B., Xia, L., Jing, J..  2018.  Copker: A Cryptographic Engine Against Cold-Boot Attacks. IEEE Transactions on Dependable and Secure Computing. 15:742–754.
Cryptosystems are essential for computer and communication security, e.g., RSA or ECDSA in PGP Email clients and AES in full disk encryption. In practice, the cryptographic keys are loaded and stored in RAM as plain-text, and therefore vulnerable to cold-boot attacks exploiting the remanence effect of RAM chips to directly read memory data. To tackle this problem, we propose Copker, a cryptographic engine that implements asymmetric cryptosystems entirely within the CPU, without storing any plain-text sensitive data in RAM. Copker supports the popular asymmetric cryptosystems (i.e., RSA and ECDSA), and deterministic random bit generators (DRBGs) used in ECDSA signing. In its active mode, Copker stores kilobytes of sensitive data, including the private key, the DRBG seed and intermediate states, only in on-chip CPU caches (and registers). Decryption/signing operations are performed without storing any sensitive information in RAM. In the suspend mode, Copker stores symmetrically-encrypted private keys and DRBG seeds in memory, while employs existing solutions to keep the key-encryption key securely in CPU registers. Hence, Copker releases the system resources in the suspend mode. We implement Copker with the support of multiple private keys. With security analyses and intensive experiments, we demonstrate that Copker provides cryptographic services that are secure against cold-boot attacks and introduce reasonable overhead.