Biblio

Found 2688 results

Filters: First Letter Of Last Name is P  [Clear All Filters]
2018-05-16
P. Tallapragada, J. Cortes.  2016.  Event-triggered stabilization of linear systems under bounded bit rates. tac. 61:1575-1589.

This paper addresses the problem of exponential practical stabilization of linear time-invariant systems with disturbances using event-triggered control and bounded communication bit rate. We consider both the case of instantaneous communication with finite precision data at each transmission and the case of non-instantaneous communication with bounded communication rate. Given a prescribed rate of convergence, the proposed event-triggered control implementations opportunistically determine the transmission instants and the finite precision data to be transmitted on each transmission. We show that our design exponentially practically stabilizes the origin while guaranteeing a uniform positive lower bound on the inter-transmission and inter-reception times, ensuring that the number of bits transmitted on each transmission is upper bounded uniformly in time, and allowing for the possibility of transmitting fewer bits at any given time if more bits than prescribed were transmitted earlier. We also characterize the necessary and sufficient average data rate for exponential practical stabilization. Several simulations illustrate the results.

2017-10-18
Pérez, Joaquín, Cerezo, Eva, Serón, Francisco J..  2016.  E-VOX: A Socially Enhanced Semantic ECA. Proceedings of the International Workshop on Social Learning and Multimodal Interaction for Designing Artificial Agents. :2:1–2:6.

In this paper, we present E-VOX, an emotionally enhanced semantic ECA designed to work as a virtual assistant to search information from Wikipedia. It includes a cognitive-affective architecture that integrates an emotion model based on ALMA and the Soar cognitive architecture. This allows the ECA to take into account features needed for social interaction such as learning and emotion management. The architecture makes it possible to influence and modify the behavior of the agent depending on the feedback received from the user and other information from the environment, allowing the ECA to achieve a more realistic and believable interaction with the user. A completely functional prototype has been developed showing the feasibility of our approach.

2017-05-19
Cao, Yingjun, Porter, Leo, Zingaro, Daniel.  2016.  Examining the Value of Analogies in Introductory Computing. Proceedings of the 2016 ACM Conference on International Computing Education Research. :231–239.

Although computing students may enjoy when their instructors teach using analogies, it is unknown to what extent these analogies are useful for their learning. This study examines the value of analogies when used to introduce three introductory computing topics. The value of these analogies may be evident during the teaching process itself (short term), in subsequent exams (long term), or in students' ability to apply their understanding to related non-technical areas (transfer). Comparing results between an experimental group (analogy) and control group (no analogy), we find potential value for analogies in short term learning. However, no solid evidence was found to support analogies as valuable for students in the long term or for knowledge transfer. Specific demographic groups were examined and promising preliminary findings are presented.

2018-05-15
Pratap B. Solanki, Xiaobo Tan.  2016.  Experimental implementation of extended Kalman filter-based optical beam tracking with a single receiver. Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics. :1103-1108.
2017-10-18
Küçük, Kubilay Ahmet, Paverd, Andrew, Martin, Andrew, Asokan, N., Simpson, Andrew, Ankele, Robin.  2016.  Exploring the Use of Intel SGX for Secure Many-Party Applications. Proceedings of the 1st Workshop on System Software for Trusted Execution. :5:1–5:6.

The theoretical construct of a Trusted Third Party (TTP) has the potential to solve many security and privacy challenges. In particular, a TTP is an ideal way to achieve secure multiparty computation—a privacy-enhancing technique in which mutually distrusting participants jointly compute a function over their private inputs without revealing these inputs. Although there exist cryptographic protocols to achieve this, their performance often limits them to the two-party case, or to a small number of participants. However, many real-world applications involve thousands or tens of thousands of participants. Examples of this type of many-party application include privacy-preserving energy metering, location-based services, and mobile network roaming. Challenging the notion that a trustworthy TTP does not exist, recent research has shown how trusted hardware and remote attestation can be used to establish a sufficient level of assurance in a real system such that it can serve as a trustworthy remote entity (TRE). We explore the use of Intel SGX, the most recent and arguably most promising trusted hardware technology, as the basis for a TRE for many-party applications. Using privacy-preserving energy metering as a case study, we design and implement a prototype TRE using SGX, and compare its performance to a previous system based on the Trusted Platform Module (TPM). Our results show that even without specialized optimizations, SGX provides comparable performance to the optimized TPM system, and therefore has significant potential for large-scale many-party applications.

2018-05-15
2017-09-19
Feng, Ranran, Prabhakaran, Balakrishnan.  2016.  On the "Face of Things". Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval. :3–4.

Face is crucial for human identity, while face identification has become crucial to information security. It is important to understand and work with the problems and challenges for all different aspects of facial feature extraction and face identification. In this tutorial, we identify and discuss four research challenges in current Face Detection/Recognition research and related research areas: (1) Unavoidable Facial Feature Alterations, (2) Voluntary Facial Feature Alterations, (3) Uncontrolled Environments, and (4) Accuracy Control on Large-scale Dataset. We also direct several different applications (spin-offs) of facial feature studies in the tutorial.

2017-08-22
Wu, Chongliang, Wang, Shangfei, Pan, Bowen, Chen, Huaping.  2016.  Facial Expression Recognition with Deep Two-view Support Vector Machine. Proceedings of the 2016 ACM on Multimedia Conference. :616–620.

This paper proposes a novel deep two-view approach to learn features from both visible and thermal images and leverage the commonality among visible and thermal images for facial expression recognition from visible images. The thermal images are used as privileged information, which is required only during training to help visible images learn better features and classifier. Specifically, we first learn a deep model for visible images and thermal images respectively, and use the learned feature representations to train SVM classifiers for expression classification. We then jointly refine the deep models as well as the SVM classifiers for both thermal images and visible images by imposing the constraint that the outputs of the SVM classifiers from two views are similar. Therefore, the resulting representations and classifiers capture the inherent connections among visible facial image, infrared facial image and target expression labels, and hence improve the recognition performance for facial expression recognition from visible images during testing. Experimental results on the benchmark expression database demonstrate the effectiveness of our proposed method.

2018-05-17
Paredes, Pablo, Ko, Ryuka, Calle-Ortiz, Eduardo, Canny, John, Hartmann, Bjorn, Niemeyer, Greg.  2016.  Fiat-Lux: Interactive Urban Lights for Combining Positive Emotion and Efficiency. Proceedings of the 2016 ACM Conference on Designing Interactive Systems. :785–795.
2017-09-15
Salam, Md Iftekhar, Wong, Kenneth Koon-Ho, Bartlett, Harry, Simpson, Leonie, Dawson, Ed, Pieprzyk, Josef.  2016.  Finding State Collisions in the Authenticated Encryption Stream Cipher ACORN. Proceedings of the Australasian Computer Science Week Multiconference. :36:1–36:10.

This paper analyzes the authenticated encryption algorithm ACORN, a candidate in the CAESAR cryptographic competition. We identify weaknesses in the state update function of ACORN which result in collisions in the internal state of ACORN. This paper shows that for a given set of key and initialization vector values we can construct two distinct input messages which result in a collision in the ACORN internal state. Using a standard PC the collision can be found almost instantly when the secret key is known. This flaw can be used by a message sender to create a forged message which will be accepted as legitimate.

2017-09-26
Poller, Andreas, Kocksch, Laura, Kinder-Kurlanda, Katharina, Epp, Felix Anand.  2016.  First-time Security Audits As a Turning Point?: Challenges for Security Practices in an Industry Software Development Team Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems. :1288–1294.

Software development is often accompanied by security audits such as penetration tests, usually performed on behalf of the software vendor. In penetration tests security experts identify entry points for attacks in a software product. Many development teams undergo such audits for the first time if their product is attacked or faces new security concerns. The audits often serve as an eye-opener for development teams: they realize that security requires much more attention. However, there is a lack of clarity with regard to what lasting benefits developers can reap from penetration tests. We report from a one-year study of a penetration test run at a major software vendor, and describe how a software development team managed to incorporate the test findings. Results suggest that penetration tests improve developers' security awareness, but that long-lasting enhancements of development practices are hampered by a lack of dedicated security stakeholders and if security is not properly reflected in the communicative and collaborative structures of the organization.

2017-05-30
Pasquini, Cecilia, Schöttle, Pascal, Böhme, Rainer, Boato, Giulia, Pèrez-Gonzàlez, Fernando.  2016.  Forensics of High Quality and Nearly Identical JPEG Image Recompression. Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security. :11–21.

We address the known problem of detecting a previous compression in JPEG images, focusing on the challenging case of high and very high quality factors (textgreater= 90) as well as repeated compression with identical or nearly identical quality factors. We first revisit the approaches based on Benford–Fourier analysis in the DCT domain and block convergence analysis in the spatial domain. Both were originally conceived for specific scenarios. Leveraging decision tree theory, we design a combined approach complementing the discriminatory capabilities. We obtain a set of novel detectors targeted to high quality grayscale JPEG images.

2017-08-02
Gong, Neil Zhenqiang, Payer, Mathias, Moazzezi, Reza, Frank, Mario.  2016.  Forgery-Resistant Touch-based Authentication on Mobile Devices. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :499–510.

Mobile devices store a diverse set of private user data and have gradually become a hub to control users' other personal Internet-of-Things devices. Access control on mobile devices is therefore highly important. The widely accepted solution is to protect access by asking for a password. However, password authentication is tedious, e.g., a user needs to input a password every time she wants to use the device. Moreover, existing biometrics such as face, fingerprint, and touch behaviors are vulnerable to forgery attacks. We propose a new touch-based biometric authentication system that is passive and secure against forgery attacks. In our touch-based authentication, a user's touch behaviors are a function of some random "secret". The user can subconsciously know the secret while touching the device's screen. However, an attacker cannot know the secret at the time of attack, which makes it challenging to perform forgery attacks even if the attacker has already obtained the user's touch behaviors. We evaluate our touch-based authentication system by collecting data from 25 subjects. Results are promising: the random secrets do not influence user experience and, for targeted forgery attacks, our system achieves 0.18 smaller Equal Error Rates (EERs) than previous touch-based authentication.

2017-09-05
Gong, Neil Zhenqiang, Payer, Mathias, Moazzezi, Reza, Frank, Mario.  2016.  Forgery-Resistant Touch-based Authentication on Mobile Devices. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :499–510.

Mobile devices store a diverse set of private user data and have gradually become a hub to control users' other personal Internet-of-Things devices. Access control on mobile devices is therefore highly important. The widely accepted solution is to protect access by asking for a password. However, password authentication is tedious, e.g., a user needs to input a password every time she wants to use the device. Moreover, existing biometrics such as face, fingerprint, and touch behaviors are vulnerable to forgery attacks. We propose a new touch-based biometric authentication system that is passive and secure against forgery attacks. In our touch-based authentication, a user's touch behaviors are a function of some random "secret". The user can subconsciously know the secret while touching the device's screen. However, an attacker cannot know the secret at the time of attack, which makes it challenging to perform forgery attacks even if the attacker has already obtained the user's touch behaviors. We evaluate our touch-based authentication system by collecting data from 25 subjects. Results are promising: the random secrets do not influence user experience and, for targeted forgery attacks, our system achieves 0.18 smaller Equal Error Rates (EERs) than previous touch-based authentication.

2017-06-05
Shafigh, Alireza Shams, Lorenzo, Beatriz, Glisic, Savo, Pérez-Romero, Jordi, DaSilva, Luiz A., MacKenzie, Allen B., Röning, Juha.  2016.  A Framework for Dynamic Network Architecture and Topology Optimization. IEEE/ACM Trans. Netw.. 24:717–730.

A new paradigm in wireless network access is presented and analyzed. In this concept, certain classes of wireless terminals can be turned temporarily into an access point (AP) anytime while connected to the Internet. This creates a dynamic network architecture (DNA) since the number and location of these APs vary in time. In this paper, we present a framework to optimize different aspects of this architecture. First, the dynamic AP association problem is addressed with the aim to optimize the network by choosing the most convenient APs to provide the quality-of-service (QoS) levels demanded by the users with the minimum cost. Then, an economic model is developed to compensate the users for serving as APs and, thus, augmenting the network resources. The users' security investment is also taken into account in the AP selection. A preclustering process of the DNA is proposed to keep the optimization process feasible in a high dense network. To dynamically reconfigure the optimum topology and adjust it to the traffic variations, a new specific encoding of genetic algorithm (GA) is presented. Numerical results show that GA can provide the optimum topology up to two orders of magnitude faster than exhaustive search for network clusters, and the improvement significantly increases with the cluster size.

2017-09-26
Devriese, Dominique, Patrignani, Marco, Piessens, Frank.  2016.  Fully-abstract Compilation by Approximate Back-translation. Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. :164–177.

A compiler is fully-abstract if the compilation from source language programs to target language programs reflects and preserves behavioural equivalence. Such compilers have important security benefits, as they limit the power of an attacker interacting with the program in the target language to that of an attacker interacting with the program in the source language. Proving compiler full-abstraction is, however, rather complicated. A common proof technique is based on the back-translation of target-level program contexts to behaviourally-equivalent source-level contexts. However, constructing such a back-translation is problematic when the source language is not strong enough to embed an encoding of the target language. For instance, when compiling from the simply-typed λ-calculus (λτ) to the untyped λ-calculus (λu), the lack of recursive types in λτ prevents such a back-translation. We propose a general and elegant solution for this problem. The key insight is that it suffices to construct an approximate back-translation. The approximation is only accurate up to a certain number of steps and conservative beyond that, in the sense that the context generated by the back-translation may diverge when the original would not, but not vice versa. Based on this insight, we describe a general technique for proving compiler full-abstraction and demonstrate it on a compiler from λτ to λu . The proof uses asymmetric cross-language logical relations and makes innovative use of step-indexing to express the relation between a context and its approximate back-translation. We believe this proof technique can scale to challenging settings and enable simpler, more scalable proofs of compiler full-abstraction.

2018-05-25
Mithun, Niluthpol Chowdhury, Panda, Rameswar, Roy-Chowdhury, Amit K.  2016.  Generating Diverse Image Datasets with Limited Labeling. Proceedings of the 2016 ACM on Multimedia Conference. :566–570.
2017-03-07
Summers, Cameron, Tronel, Greg, Cramer, Jason, Vartakavi, Aneesh, Popp, Phillip.  2016.  GNMID14: A Collection of 110 Million Global Music Identification Matches. Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. :693–696.

A new dataset is presented composed of music identification matches from Gracenote, a leading global music metadata company. Matches from January 1, 2014 to December 31, 2014 have been curated and made available as a public dataset called Gracenote Music Identification 2014, or GNMID14, at the following address: https://developer.gracenote.com/mid2014. This collection is the first significant music identification dataset and one of the largest music related datasets available containing more than 110M matches in 224 countries for 3M unique tracks, and 509K unique artists. It features geotemporal information (i.e. country and match date), genre and mood metadata. In this paper, we characterize the dataset and demonstrate its utility for Information Retrieval (IR) research.

2018-05-17
Psiaki, Mark L, Humphreys, Todd E.  2016.  GNSS Spoofing and Detection. Proceedings of the IEEE. 104:1258–1270.
2017-04-03
Purvine, Emilie, Johnson, John R., Lo, Chaomei.  2016.  A Graph-Based Impact Metric for Mitigating Lateral Movement Cyber Attacks. Proceedings of the 2016 ACM Workshop on Automated Decision Making for Active Cyber Defense. :45–52.

Most cyber network attacks begin with an adversary gaining a foothold within the network and proceed with lateral movement until a desired goal is achieved. The mechanism by which lateral movement occurs varies but the basic signature of hopping between hosts by exploiting vulnerabilities is the same. Because of the nature of the vulnerabilities typically exploited, lateral movement is very difficult to detect and defend against. In this paper we define a dynamic reachability graph model of the network to discover possible paths that an adversary could take using different vulnerabilities, and how those paths evolve over time. We use this reachability graph to develop dynamic machine-level and network-level impact scores. Lateral movement mitigation strategies which make use of our impact scores are also discussed, and we detail an example using a freely available data set.

2017-05-16
Fiore, Dario, Fournet, Cédric, Ghosh, Esha, Kohlweiss, Markulf, Ohrimenko, Olga, Parno, Bryan.  2016.  Hash First, Argue Later: Adaptive Verifiable Computations on Outsourced Data. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1304–1316.

Proof systems for verifiable computation (VC) have the potential to make cloud outsourcing more trustworthy. Recent schemes enable a verifier with limited resources to delegate large computations and verify their outcome based on succinct arguments: verification complexity is linear in the size of the inputs and outputs (not the size of the computation). However, cloud computing also often involves large amounts of data, which may exceed the local storage and I/O capabilities of the verifier, and thus limit the use of VC. In this paper, we investigate multi-relation hash & prove schemes for verifiable computations that operate on succinct data hashes. Hence, the verifier delegates both storage and computation to an untrusted worker. She uploads data and keeps hashes; exchanges hashes with other parties; verifies arguments that consume and produce hashes; and selectively downloads the actual data she needs to access. Existing instantiations that fit our definition either target restricted classes of computations or employ relatively inefficient techniques. Instead, we propose efficient constructions that lift classes of existing arguments schemes for fixed relations to multi-relation hash & prove schemes. Our schemes (1) rely on hash algorithms that run linearly in the size of the input; (2) enable constant-time verification of arguments on hashed inputs; (3) incur minimal overhead for the prover. Their main benefit is to amortize the linear cost for the verifier across all relations with shared I/O. Concretely, compared to solutions that can be obtained from prior work, our new hash & prove constructions yield a 1,400x speed-up for provers. We also explain how to further reduce the linear verification costs by partially outsourcing the hash computation itself, obtaining a 480x speed-up when applied to existing VC schemes, even on single-relation executions.

2017-08-18
Pei, Kexin, Gu, Zhongshu, Saltaformaggio, Brendan, Ma, Shiqing, Wang, Fei, Zhang, Zhiwei, Si, Luo, Zhang, Xiangyu, Xu, Dongyan.  2016.  HERCULE: Attack Story Reconstruction via Community Discovery on Correlated Log Graph. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :583–595.

Advanced cyber attacks consist of multiple stages aimed at being stealthy and elusive. Such attack patterns leave their footprints spatio-temporally dispersed across many different logs in victim machines. However, existing log-mining intrusion analysis systems typically target only a single type of log to discover evidence of an attack and therefore fail to exploit fundamental inter-log connections. The output of such single-log analysis can hardly reveal the complete attack story for complex, multi-stage attacks. Additionally, some existing approaches require heavyweight system instrumentation, which makes them impractical to deploy in real production environments. To address these problems, we present HERCULE, an automated multi-stage log-based intrusion analysis system. Inspired by graph analytics research in social network analysis, we model multi-stage intrusion analysis as a community discovery problem. HERCULE builds multi-dimensional weighted graphs by correlating log entries across multiple lightweight logs that are readily available on commodity systems. From these, HERCULE discovers any "attack communities" embedded within the graphs. Our evaluation with 15 well known APT attack families demonstrates that HERCULE can reconstruct attack behaviors from a spectrum of cyber attacks that involve multiple stages with high accuracy and low false positive rates.

2017-11-20
Liu, R., Wu, H., Pang, Y., Qian, H., Yu, S..  2016.  A highly reliable and tamper-resistant RRAM PUF: Design and experimental validation. 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :13–18.

This work presents a highly reliable and tamper-resistant design of Physical Unclonable Function (PUF) exploiting Resistive Random Access Memory (RRAM). The RRAM PUF properties such as uniqueness and reliability are experimentally measured on 1 kb HfO2 based RRAM arrays. Firstly, our experimental results show that selection of the split reference and offset of the split sense amplifier (S/A) significantly affect the uniqueness. More dummy cells are able to generate a more accurate split reference, and relaxing transistor's sizes of the split S/A can reduce the offset, thus achieving better uniqueness. The average inter-Hamming distance (HD) of 40 RRAM PUF instances is 42%. Secondly, we propose using the sum of the read-out currents of multiple RRAM cells for generating one response bit, which statistically minimizes the risk of early retention failure of a single cell. The measurement results show that with 8 cells per bit, 0% intra-HD can maintain more than 50 hours at 150 °C or equivalently 10 years at 69 °C by 1/kT extrapolation. Finally, we propose a layout obfuscation scheme where all the S/A are randomly embedded into the RRAM array to improve the RRAM PUF's resistance against invasive tampering. The RRAM cells are uniformly placed between M4 and M5 across the array. If the adversary attempts to invasively probe the output of the S/A, he has to remove the top-level interconnect and destroy the RRAM cells between the interconnect layers. Therefore, the RRAM PUF has the “self-destructive” feature. The hardware overhead of the proposed design strategies is benchmarked in 64 × 128 RRAM PUF array at 65 nm, while these proposed optimization strategies increase latency, energy and area over a naive implementation, they significantly improve the performance and security.

2017-06-05
Pan, Xiang, Yegneswaran, Vinod, Chen, Yan, Porras, Phillip, Shin, Seungwon.  2016.  HogMap: Using SDNs to Incentivize Collaborative Security Monitoring. Proceedings of the 2016 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization. :7–12.

Cyber Threat Intelligence (CTI) sharing facilitates a comprehensive understanding of adversary activity and enables enterprise networks to prioritize their cyber defense technologies. To that end, we introduce HogMap, a novel software-defined infrastructure that simplifies and incentivizes collaborative measurement and monitoring of cyber-threat activity. HogMap proposes to transform the cyber-threat monitoring landscape by integrating several novel SDN-enabled capabilities: (i) intelligent in-place filtering of malicious traffic, (ii) dynamic migration of interesting and extraordinary traffic and (iii) a software-defined marketplace where various parties can opportunistically subscribe to and publish cyber-threat intelligence services in a flexible manner. We present the architectural vision and summarize our preliminary experience in developing and operating an SDN-based HoneyGrid, which spans three enterprises and implements several of the enabling capabilities (e.g., traffic filtering, traffic forwarding and connection migration). We find that SDN technologies greatly simplify the design and deployment of such globally distributed and elastic HoneyGrids.