Biblio
Virtualization enables datacenter operators to safely run computations that belong to untrusted tenants. An ideal virtual machine has three properties: a small memory footprint; strong isolation from other VMs and the host OS; and the ability to maintain in-memory state across client requests. Unfortunately, modern virtualization technologies cannot provide all three properties at once. In this paper, we explain why, and propose a new virtualization approach, called Alto, that virtualizes at the layer of a managed runtime interface. Through careful design of (1) the application-facing managed interface and (2) the internal runtime architecture, Alto provides VMs that are small, secure, and stateful. Conveniently, Alto also simplifies VM operations like suspension, migration, and resumption. We provide several details about the proposed design, and discuss the remaining challenges that must be solved to fully realize the Alto vision.
This paper considers a pilot spoofing attack scenario in a massive MIMO system. A malicious user tries to disturb the channel estimation process by sending interference symbols to the base-station (BS) via the uplink. Another legitimate user counters by sending random symbols. The BS does not possess any partial channel state information (CSI) and distribution of symbols sent by malicious user a priori. For such scenario, this paper aims to separate the channel directions from the legitimate and malicious users to the BS, respectively. A blind channel separation algorithm based on estimating the characteristic function of the distribution of the signal space vector is proposed. Simulation results show that the proposed algorithm provides good channel separation performance in a typical massive MIMO system.
While the control of individuals over their personal data is increasingly seen as an essential component of their privacy, the word "control" is usually used in a very vague way, both by lawyers and by computer scientists. This lack of precision may lead to misunderstandings and makes it difficult to check compliance. To address this issue, we propose a formal framework based on capacities to specify the notion of control over personal data and to reason about control properties. We illustrate our framework with social network systems and show that it makes it possible to characterize the types of control over personal data that they provide to their users and to compare them in a rigorous way.
A 2D-Compressive Sensing and hyper-chaos based image compression-encryption algorithm is proposed. The 2D image is compressively sampled and encrypted using two measurement matrices. A chaos based measurement matrix construction is employed. The construction of the measurement matrix is controlled by the initial and control parameters of the chaotic system, which are used as the secret key for encryption. The linear measurements of the sparse coefficients of the image are then subjected to a hyper-chaos based diffusion which results in the cipher image. Numerical simulation and security analysis are performed to verify the validity and reliability of the proposed algorithm.
Compressed sensing (CS) can recover a signal that is sparse in certain representation and sample at the rate far below the Nyquist rate. But limited to the accuracy of atomic matching of traditional reconstruction algorithm, CS is difficult to reconstruct the initial signal with high resolution. Meanwhile, scholar found that trained neural network have a strong ability in settling such inverse problems. Thus, we propose a Super-Resolution Convolutional Neural Network (SRCNN) that consists of three convolutional layers. Every layer has a fixed number of kernels and has their own specific function. The process is implemented using classical compressed sensing algorithm to process the input image, afterwards, the output images are coded via SRCNN. We achieve higher resolution image by using the SRCNN algorithm proposed. The simulation results show that the proposed method helps improve PSNR value and promote visual effect.
Monitoring systems are essential to understand and control the behaviour of systems and networks. Cyber-physical systems (CPS) are particularly delicate under that perspective since they involve real-time constraints and physical phenomena that are not usually considered in common IT solutions. Therefore, there is a need for publicly available monitoring tools able to contemplate these aspects. In this poster/demo, we present our initiative, called CPS-MT, towards a versatile, real-time CPS monitoring tool, with a particular focus on security research. We first present its architecture and main components, followed by a MiniCPS-based case study. We also describe a performance analysis and preliminary results. During the demo, we will discuss CPS-MT's capabilities and limitations for security applications.
We propose a crypto-aided Bayesian detection framework for detecting false data in short messages with low overhead. The proposed approach employs the Bayesian detection at the physical layer in parallel with a lightweight cryptographic detection, followed by combining the two detection outcomes. We develop the maximum a posteriori probability (MAP) rule for combining the cryptographic and Bayesian detection outcome, which minimizes the average probability of detection error. We derive the probability of false alarm and missed detection and discuss the improvement of detection accuracy provided by the proposed method.
State estimation allows continuous monitoring of a power system by estimating the power system state variables from measurement data. Unfortunately, the measurement data provided by the devices can serve as attack vectors for false data injection attacks. As more components are connected to the internet, power system is exposed to various known and unknown cyber threats. Previous investigations have shown that false data can be injected on data from traditional meters that bypasses bad data detection systems. This paper extends this investigation by giving an overview of cyber security threats to phasor measurement units, assessing the impact of false data injection on hybrid state estimators and suggesting security recommendations. Simulations are performed on IEEE-30 and 118 bus test systems.
Transitioning to more open architectures has been making Cyber-Physical Systems (CPS) vulnerable to malicious attacks that are beyond the conventional cyber attacks. This paper studies attack-resilience enhancement for a system under emerging attacks in the environment of the controller. An effective way to address this problem is to make system state estimation accurate enough for control regardless of the compromised components. This work follows this way and develops a procedure named CPS checkpointing and recovery, which leverages historical data to recover failed system states. Specially, we first propose a new concept of physical-state recovery. The essential operation is defined as rolling the system forward starting from a consistent historical system state. Second, we design a checkpointing protocol that defines how to record system states for the recovery. The protocol introduces a sliding window that accommodates attack-detection delay to improve the correctness of stored states. Third, we present a use case of CPS checkpointing and recovery that deals with compromised sensor measurements. At last, we evaluate our design through conducting simulator-based experiments and illustrating the use of our design with an unmanned vehicle case study.
With the increase of mobile equipment and transmission data, Common Public Radio Interface (CPRI) between Building Base band Unit (BBU) and Remote Radio Unit (RRU) suffers amounts of increasing transmission data. It is essential to compress the data in CPRI if more data should be transferred without congestion under the premise of restriction of fiber consumption. A data compression scheme based on Discrete Sine Transform (DST) and Lloyd-Max quantization is proposed in distributed Base Station (BS) architecture. The time-domain samples are transformed by DST according to the characteristics of Orthogonal Frequency Division Multiplexing (OFDM) baseband signals, and then the coefficients after transformation are quantified by the Lloyd-Max quantizer. The simulation results show that the proposed scheme can work at various Compression Ratios (CRs) while the values of Error Vector Magnitude (EVM) are better than the limits in 3GPP.
Click-through rate prediction is an essential task in industrial applications, such as online advertising. Recently deep learning based models have been proposed, which follow a similar Embedding&MLP paradigm. In these methods large scale sparse input features are first mapped into low dimensional embedding vectors, and then transformed into fixed-length vectors in a group-wise manner, finally concatenated together to fed into a multilayer perceptron (MLP) to learn the nonlinear relations among features. In this way, user features are compressed into a fixed-length representation vector, in regardless of what candidate ads are. The use of fixed-length vector will be a bottleneck, which brings difficulty for Embedding&MLP methods to capture user's diverse interests effectively from rich historical behaviors. In this paper, we propose a novel model: Deep Interest Network (DIN) which tackles this challenge by designing a local activation unit to adaptively learn the representation of user interests from historical behaviors with respect to a certain ad. This representation vector varies over different ads, improving the expressive ability of model greatly. Besides, we develop two techniques: mini-batch aware regularization and data adaptive activation function which can help training industrial deep networks with hundreds of millions of parameters. Experiments on two public datasets as well as an Alibaba real production dataset with over 2 billion samples demonstrate the effectiveness of proposed approaches, which achieve superior performance compared with state-of-the-art methods. DIN now has been successfully deployed in the online display advertising system in Alibaba, serving the main traffic.
Shielding systems such as AMD's Secure Encrypted Virtualization aim to protect a virtual machine from a higher privileged entity such as the hypervisor. A cornerstone of these systems is the ability to protect the memory from unauthorized accesses. Despite this protection mechanism, previous attacks leveraged the control over memory resources to infer control flow of applications running in a shielded system. While previous works focused on a specific target application, there has been no general analysis on how the control flow of a protected application can be inferred. This paper tries to overcome this gap by providing a detailed analysis on the detectability of control flow using memory access patterns. To that end, we do not focus on a specific shielding system or a specific target application, but present a framework which can be applied to different types of shielding systems as well as to different types of attackers. By training a random forest classifier on the memory accesses emitted by syscalls of a shielded entity, we show that it is possible to infer the control flow of shielded entities with a high degree of accuracy.
Cybersecurity in control systems has been actively discussed in recent years. In particular, networked control systems (NCSs) over the Internet are exposed to various types of cyberattacks such as false data injection attacks. This paper proposes a detection and mitigation method of the false data injection attacks in interactive NCSs, i.e., bilateral teleoperation systems. A bilateral teleoperation system exchanges position and force information through the Internet between the master and slave robots. The proposed method utilizes two redundant communication channels for both the master-to-slave and slave-to-master paths. The attacks are detected by a tamper detection observer (TDO) on each of the master and slave sides. The TDO compares the position responses of actual robots and robot models. A path selector on each side chooses the appropriate position and force responses from the responses received through the two communication channels, based on the outputs of the TDO. The proposed method is validated by simulations with attack models.
Wireless Sensor Network (WSN) is often to consist of adhoc devices that have low power, limited memory and computational power. WSN is deployed in hostile environment, due to which attacker can inject false data easily. Due to distributed nature of WSN, adversary can easily inject the bogus data into the network because sensor nodes don't ensure data integrity and not have strong authentication mechanism. This paper reviews and analyze the performance of some of the existing false data filtering schemes and propose new scheme to identify the false data injected by adversary or compromised node. Proposed schemes shown better and efficiently filtrate the false data in comparison with existing schemes.
Mobile ad hoc networks (MANETs) are self-configuring, dynamic networks in which nodes are free to move. These nodes are susceptible to various malicious attacks. In this paper, we propose a distributed trust-based security scheme to prevent multiple attacks such as Probe, Denial-of-Service (DoS), Vampire, User-to-Root (U2R) occurring simultaneously. We report above 95% accuracy in data transmission and reception by applying the proposed scheme. The simulation has been carried out using network simulator ns-2 in a AODV routing protocol environment. To the best of the authors' knowledge, this is the first work reporting a distributed trust-based prevention scheme for preventing multiple attacks. We also check the scalability of the technique using variable node densities in the network.