Biblio
Wireless Mesh Networks (WMN) are becoming inevitable in this world of high technology as it provides low cost access to broadband services. Moreover, the technologists are doing research to make WMN more reliable and secure. Subsequently, among wireless ad-hoc networking technologies, Bluetooth Low Energy (BLE) is gaining high degree of importance among researchers due to its easy availability in the gadgets and low power consumption. BLE started its journey from version 4.0 and announced the latest version 5 with mesh support capability. BLE being a low power and mesh supported technology is nowadays among the hot research topics for the researchers. Many of the researchers are working on BLE mesh technology to make it more efficient and smart. Apart from other variables of efficiency, like all communication networks, mesh network security is also of a great concern. In view of the aforesaid, this paper provides a comprehensive review on several works associated to the security in WMN and BLE mesh networks and the research related to the BLE security protocols. Moreover, after the detailed research on related works, this paper has discussed the pros and cons of the present developed mesh security mechanisms. Also, at the end after extracting the curx from the present research on WMN and BLE mesh security, this research study has devised some solutions as how to mitigate the BLE mesh network security lapses.
Over the past few years, virtual and mixed reality systems have evolved significantly yielding high immersive experiences. Most of the metaphors used for interaction with the virtual environment do not provide the same meaningful feedback, to which the users are used to in the real world. This paper proposes a cyber-glove to improve the immersive sensation and the degree of embodiment in virtual and mixed reality interaction tasks. In particular, we are proposing a cyber-glove system that tracks wrist movements, hand orientation and finger movements. It provides a decoupled position of the wrist and hand, which can contribute to a better embodiment in interaction and manipulation tasks. Additionally, the detection of the curvature of the fingers aims to improve the proprioceptive perception of the grasping/releasing gestures more consistent to visual feedback. The cyber-glove system is being developed for VR applications related to real estate promotion, where users have to go through divisions of the house and interact with objects and furniture. This work aims to assess if glove-based systems can contribute to a higher sense of immersion, embodiment and usability when compared to standard VR hand controller devices (typically button-based). Twenty-two participants tested the cyber-glove system against the HTC Vive controller in a 3D manipulation task, specifically the opening of a virtual door. Metric results showed that 83% of the users performed faster door pushes, and described shorter paths with their hands wearing the cyber-glove. Subjective results showed that all participants rated the cyber-glove based interactions as equally or more natural, and 90% of users experienced an equal or a significant increase in the sense of embodiment.
Hardware implementation of many of today's applications such as those in automotive, telecommunication, bio, and security, require heavy repeated computations, and concurrency in the execution of these computations. These requirements are not easily satisfied by existing embedded systems. This paper proposes an embedded system architecture that is enhanced by an array of accelerators, and a bussing system that enables concurrency in operation of accelerators. This architecture is statically configurable to configure it for performing a specific application. The embedded system architecture and architecture of the configurable accelerators are discussed in this paper. A case study examines an automotive application running on our proposed system.
IT technology is a vital part of our everyday life and society. Additionally, as it is present in strategic domains like the military, healthcare or critical infrastructure, the aspect of protection, i.e. cybersecurity is of utmost importance. In recent years, the demand for cybersecurity experts is exponentially rising. Additionally, the field of cybersecurity is very much interdisciplinary and therefore requires a broad set of skills. Renowned organisations as ACM or IEEE have recognized the importance of cybersecurity experts and proposed guidelines for higher education training of such professionals. This paper presents an overview of a cybersecurity education model from the Information Systems and Information Technology perspective together with a good example and experience of the University of Maribor. The presented education model is shaped according to the guidelines by the Joint Task Force on Cybersecurity Education and the expectations of the Slovene industry regarding the knowledge and skills their future employees should possess.