Biblio

Found 609 results

Filters: Keyword is cyber physical systems  [Clear All Filters]
2020-10-06
Nuqui, Reynaldo, Hong, Junho, Kondabathini, Anil, Ishchenko, Dmitry, Coats, David.  2018.  A Collaborative Defense for Securing Protective Relay Settings in Electrical Cyber Physical Systems. 2018 Resilience Week (RWS). :49—54.
Modern power systems today are protected and controlled increasingly by embedded systems of computing technologies with a great degree of collaboration enabled by communication. Energy cyber-physical systems such as power systems infrastructures are increasingly vulnerable to cyber-attacks on the protection and control layer. We present a method of securing protective relays from malicious change in protective relay settings via collaboration of devices. Each device checks the proposed setting changes of its neighboring devices for consistency and coordination with its own settings using setting rules based on relay coordination principles. The method is enabled via peer-to-peer communication between IEDs. It is validated in a cyber-physical test bed containing a real time digital simulator and actual relays that communicate via IEC 61850 GOOSE messages. Test results showed improvement in cyber physical security by using domain based rules to block malicious changes in protection settings caused by simulated cyber-attacks. The method promotes the use of defense systems that are aware of the physical systems which they are designed to secure.
2019-12-10
Tian, Yun, Xu, Wenbo, Qin, Jing, Zhao, Xiaofan.  2018.  Compressive Detection of Random Signals from Sparsely Corrupted Measurements. 2018 International Conference on Network Infrastructure and Digital Content (IC-NIDC). :389-393.

Compressed sensing (CS) integrates sampling and compression into a single step to reduce the processed data amount. However, the CS reconstruction generally suffers from high complexity. To solve this problem, compressive signal processing (CSP) is recently proposed to implement some signal processing tasks directly in the compressive domain without reconstruction. Among various CSP techniques, compressive detection achieves the signal detection based on the CS measurements. This paper investigates the compressive detection problem of random signals when the measurements are corrupted. Different from the current studies that only consider the dense noise, our study considers both the dense noise and sparse error. The theoretical performance is derived, and simulations are provided to verify the derived theoretical results.

2020-10-06
Li, Zhiyi, Shahidehpour, Mohammad, Galvin, Robert W., Li, Yang.  2018.  Collaborative Cyber-Physical Restoration for Enhancing the Resilience of Power Distribution Systems. 2018 IEEE Power Energy Society General Meeting (PESGM). :1—5.

This paper sheds light on the collaborative efforts in restoring cyber and physical subsystems of a modern power distribution system after the occurrence of an extreme weather event. The extensive cyber-physical interdependencies in the operation of power distribution systems are first introduced for investigating the functionality loss of each subsystem when the dependent subsystem suffers disruptions. A resilience index is then proposed for measuring the effectiveness of restoration activities in terms of restoration rapidity. After modeling operators' decision making for economic dispatch as a second-order cone programming problem, this paper proposes a heuristic approach for prioritizing the activities for restoring both cyber and physical subsystems. In particular, the proposed heuristic approach takes into consideration of cyber-physical interdependencies for improving the operation performance. Case studies are also conducted to validate the collaborative restoration model in the 33-bus power distribution system.

2019-12-16
Cerf, Sophie, Robu, Bogdan, Marchand, Nicolas, Mokhtar, Sonia Ben, Bouchenak, Sara.  2018.  A Control-Theoretic Approach for Location Privacy in Mobile Applications. 2018 IEEE Conference on Control Technology and Applications (CCTA). :1488-1493.

The prevalent use of mobile applications using location information to improve the quality of their service has arisen privacy issues, particularly regarding the extraction of user's points on interest. Many studies in the literature focus on presenting algorithms that allow to protect the user of such applications. However, these solutions often require a high level of expertise to be understood and tuned properly. In this paper, the first control-based approach of this problem is presented. The protection algorithm is considered as the ``physical'' plant and its parameters as control signals that enable to guarantee privacy despite user's mobility pattern. The following of the paper presents the first control formulation of POI-related privacy measure, as well as dynamic modeling and a simple yet efficient PI control strategy. The evaluation using simulated mobility records shows the relevance and efficiency of the presented approach.

2020-10-06
Amarasinghe, Kasun, Wickramasinghe, Chathurika, Marino, Daniel, Rieger, Craig, Manicl, Milos.  2018.  Framework for Data Driven Health Monitoring of Cyber-Physical Systems. 2018 Resilience Week (RWS). :25—30.

Modern infrastructure is heavily reliant on systems with interconnected computational and physical resources, named Cyber-Physical Systems (CPSs). Hence, building resilient CPSs is a prime need and continuous monitoring of the CPS operational health is essential for improving resilience. This paper presents a framework for calculating and monitoring of health in CPSs using data driven techniques. The main advantages of this data driven methodology is that the ability of leveraging heterogeneous data streams that are available from the CPSs and the ability of performing the monitoring with minimal a priori domain knowledge. The main objective of the framework is to warn the operators of any degradation in cyber, physical or overall health of the CPS. The framework consists of four components: 1) Data acquisition and feature extraction, 2) state identification and real time state estimation, 3) cyber-physical health calculation and 4) operator warning generation. Further, this paper presents an initial implementation of the first three phases of the framework on a CPS testbed involving a Microgrid simulation and a cyber-network which connects the grid with its controller. The feature extraction method and the use of unsupervised learning algorithms are discussed. Experimental results are presented for the first two phases and the results showed that the data reflected different operating states and visualization techniques can be used to extract the relationships in data features.

Jacobs, Nicholas, Hossain-McKenzie, Shamina, Vugrin, Eric.  2018.  Measurement and Analysis of Cyber Resilience for Control Systems: An Illustrative Example. 2018 Resilience Week (RWS). :38—46.

Control systems for critical infrastructure are becoming increasingly interconnected while cyber threats against critical infrastructure are becoming more sophisticated and difficult to defend against. Historically, cyber security has emphasized building defenses to prevent loss of confidentiality, integrity, and availability in digital information and systems, but in recent years cyber attacks have demonstrated that no system is impenetrable and that control system operation may be detrimentally impacted. Cyber resilience has emerged as a complementary priority that seeks to ensure that digital systems can maintain essential performance levels, even while capabilities are degraded by a cyber attack. This paper examines how cyber security and cyber resilience may be measured and quantified in a control system environment. Load Frequency Control is used as an illustrative example to demonstrate how cyber attacks may be represented within mathematical models of control systems, to demonstrate how these events may be quantitatively measured in terms of cyber security or cyber resilience, and the differences and similarities between the two mindsets. These results demonstrate how various metrics are applied, the extent of their usability, and how it is important to analyze cyber-physical systems in a comprehensive manner that accounts for all the various parts of the system.

Sullivan, Daniel, Colbert, Edward, Cowley, Jennifer.  2018.  Mission Resilience for Future Army Tactical Networks. 2018 Resilience Week (RWS). :11—14.

Cyber-physical systems are an integral component of weapons, sensors and autonomous vehicles, as well as cyber assets directly supporting tactical forces. Mission resilience of tactical networks affects command and control, which is important for successful military operations. Traditional engineering methods for mission assurance will not scale during battlefield operations. Commanders need useful mission resilience metrics to help them evaluate the ability of cyber assets to recover from incidents to fulfill mission essential functions. We develop 6 cyber resilience metrics for tactical network architectures. We also illuminate how psychometric modeling is necessary for future research to identify resilience metrics that are both applicable to the dynamic mission state and meaningful to commanders and planners.

2019-02-08
Geyer, Fabien, Carle, Georg.  2018.  Learning and Generating Distributed Routing Protocols Using Graph-Based Deep Learning. Proceedings of the 2018 Workshop on Big Data Analytics and Machine Learning for Data Communication Networks. :40-45.

Automated network control and management has been a long standing target of network protocols. We address in this paper the question of automated protocol design, where distributed networked nodes have to cooperate to achieve a common goal without a priori knowledge on which information to exchange or the network topology. While reinforcement learning has often been proposed for this task, we propose here to apply recent methods from semi-supervised deep neural networks which are focused on graphs. Our main contribution is an approach for applying graph-based deep learning on distributed routing protocols via a novel neural network architecture named Graph-Query Neural Network. We apply our approach to the tasks of shortest path and max-min routing. We evaluate the learned protocols in cold-start and also in case of topology changes. Numerical results show that our approach is able to automatically develop efficient routing protocols for those two use-cases with accuracies larger than 95%. We also show that specific properties of network protocols, such as resilience to packet loss, can be explicitly included in the learned protocol.

2020-01-07
Chen, Wei-Hao, Fan, Chun-I, Tseng, Yi-Fan.  2018.  Efficient Key-Aggregate Proxy Re-Encryption for Secure Data Sharing in Clouds. 2018 IEEE Conference on Dependable and Secure Computing (DSC). :1-4.

Cloud computing undoubtedly is the most unparalleled technique in rapidly developing industries. Protecting sensitive files stored in the clouds from being accessed by malicious attackers is essential to the success of the clouds. In proxy re-encryption schemes, users delegate their encrypted files to other users by using re-encryption keys, which elegantly transfers the users' burden to the cloud servers. Moreover, one can adopt conditional proxy re-encryption schemes to employ their access control policy on the files to be shared. However, we recognize that the size of re-encryption keys will grow linearly with the number of the condition values, which may be impractical in low computational devices. In this paper, we combine a key-aggregate approach and a proxy re-encryption scheme into a key-aggregate proxy re-encryption scheme. It is worth mentioning that the proposed scheme is the first key-aggregate proxy re-encryption scheme. As a side note, the size of re-encryption keys is constant.

2020-11-30
Gerdroodbari, Y. Z., Davarpanah, M., Farhangi, S..  2018.  Remanent Flux Negative Effects on Transformer Diagnostic Test Results and a Novel Approach for Its Elimination. IEEE Transactions on Power Delivery. 33:2938–2945.
Influence of remanent flux on hysteresis curve of the transformer core is addressed in this paper. In addition, its significant negative effect on transformer diagnostic tests is quantified based on experimental studies. Furthermore, a novel approach is proposed to efficiently and quickly eliminate the remanent flux. This approach is evaluated based on simulation studies on a 230/63-kV power transformer. Meanwhile, experimental studies are performed on both 0.2/0.2 and 20/0.4 kV transformers. These studies reveal that the approach not only is well able to eliminate the remanent flux, but also it has various advantages over the commonly used method. In addition, this approach is equally applicable for various power, distribution, and instrument transformer types.
2019-02-08
Jensen, Theodore, Albayram, Yusuf, Khan, Mohammad Maifi Hasan, Buck, Ross, Coman, Emil, Fahim, Md Abdullah Al.  2018.  Initial Trustworthiness Perceptions of a Drone System Based on Performance and Process Information. Proceedings of the 6th International Conference on Human-Agent Interaction. :229-237.

Prior work notes dispositional, learned, and situational aspects of trust in automation. However, no work has investigated the relative role of these factors in initial trust of an automated system. Moreover, trust in automation researchers often consider trust unidimensionally, whereas ability, integrity, and benevolence perceptions (i.e., trusting beliefs) may provide a more thorough understanding of trust dynamics. To investigate this, we recruited 163 participants on Amazon's Mechanical Turk (MTurk) and randomly assigned each to one of 4 videos describing a hypothetical drone system: one control, the others with additional system performance or process, or both types of information. Participants reported on trusting beliefs in the system, propensity to trust other people, risk-taking tendencies, and trust in the government law enforcement agency behind the system. We found that financial risk-taking tendencies influenced trusting beliefs. Also, those who received process information were likely to have higher integrity and ability beliefs than those not receiving process information, while those who received performance information were likely to have higher ability beliefs. Lastly, perceptions of structural assurance positively influenced all three trusting beliefs. Our findings suggest that a) users' risk-taking tendencies influence trustworthiness perceptions of systems, b) different types of information about a system have varied effects on the trustworthiness dimensions, and c) institutions play an important role in users' calibration of trust. Insights gained from this study can help design training materials and interfaces that improve user trust calibration in automated systems.

Nguyen, Sinh-Ngoc, Nguyen, Van-Quyet, Choi, Jintae, Kim, Kyungbaek.  2018.  Design and Implementation of Intrusion Detection System Using Convolutional Neural Network for DoS Detection. Proceedings of the 2Nd International Conference on Machine Learning and Soft Computing. :34-38.

Nowadays, network is one of the essential parts of life, and lots of primary activities are performed by using the network. Also, network security plays an important role in the administrator and monitors the operation of the system. The intrusion detection system (IDS) is a crucial module to detect and defend against the malicious traffics before the system is affected. This system can extract the information from the network system and quickly indicate the reaction which provides real-time protection for the protected system. However, detecting malicious traffics is very complicating because of their large quantity and variants. Also, the accuracy of detection and execution time are the challenges of some detection methods. In this paper, we propose an IDS platform based on convolutional neural network (CNN) called IDS-CNN to detect DoS attack. Experimental results show that our CNN based DoS detection obtains high accuracy at most 99.87%. Moreover, comparisons with other machine learning techniques including KNN, SVM, and Naïve Bayes demonstrate that our proposed method outperforms traditional ones.

2020-07-16
Lingasubramanian, Karthikeyan, Kumar, Ranveer, Gunti, Nagendra Babu, Morris, Thomas.  2018.  Study of hardware trojans based security vulnerabilities in cyber physical systems. 2018 IEEE International Conference on Consumer Electronics (ICCE). :1—6.

The dependability of Cyber Physical Systems (CPS) solely lies in the secure and reliable functionality of their backbone, the computing platform. Security of this platform is not only threatened by the vulnerabilities in the software peripherals, but also by the vulnerabilities in the hardware internals. Such threats can arise from malicious modifications to the integrated circuits (IC) based computing hardware, which can disable the system, leak information or produce malfunctions. Such modifications to computing hardware are made possible by the globalization of the IC industry, where a computing chip can be manufactured anywhere in the world. In the complex computing environment of CPS such modifications can be stealthier and undetectable. Under such circumstances, design of these malicious modifications, and eventually their detection, will be tied to the functionality and operation of the CPS. So it is imperative to address such threats by incorporating security awareness in the computing hardware design in a comprehensive manner taking the entire system into consideration. In this paper, we present a study in the influence of hardware Trojans on closed-loop systems, which form the basis of CPS, and establish threat models. Using these models, we perform a case study on a critical CPS application, gas pipeline based SCADA system. Through this process, we establish a completely virtual simulation platform along with a hardware-in-the-loop based simulation platform for implementation and testing.

2019-02-08
Yang, Chun, Wen, Yu, Guo, Jianbin, Song, Haitao, Li, Linfeng, Che, Haoyang, Meng, Dan.  2018.  A Convolutional Neural Network Based Classifier for Uncompressed Malware Samples. Proceedings of the 1st Workshop on Security-Oriented Designs of Computer Architectures and Processors. :15-17.

This paper proposes a deep learning based method for efficient malware classification. Specially, we convert the malware classification problem into the image classification problem, which can be addressed through leveraging convolutional neural networks (CNNs). For many malware families, the images belonging to the same family have similar contours and textures, so we convert the Binary files of malware samples to uncompressed gray-scale images which possess complete information of the original malware without artificial feature extraction. We then design classifier based on Tensorflow framework of Google by combining the deep learning (DL) and malware detection technology. Experimental results show that the uncompressed gray-scale images of the malware are relatively easy to distinguish and the CNN based classifier can achieve a high success rate of 98.2%

2020-10-06
Tomić, Ivana, Breza, Michael J., Jackson, Greg, Bhatia, Laksh, McCann, Julie A..  2018.  Design and Evaluation of Jamming Resilient Cyber-Physical Systems. 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :687—694.

There is a growing movement to retrofit ageing, large scale infrastructures, such as water networks, with wireless sensors and actuators. Next generation Cyber-Physical Systems (CPSs) are a tight integration of sensing, control, communication, computation and physical processes. The failure of any one of these components can cause a failure of the entire CPS. This represents a system design challenge to address these interdependencies. Wireless communication is unreliable and prone to cyber-attacks. An attack upon the wireless communication of CPS would prevent the communication of up-to-date information from the physical process to the controller. A controller without up-to-date information is unable to meet system's stability and performance guarantees. We focus on design approach to make CPSs secure and we evaluate their resilience to jamming attacks aimed at disrupting the system's wireless communication. We consider classic time-triggered control scheme and various resource-aware event-triggered control schemes. We evaluate these on a water network test-bed against three jamming strategies: constant, random, and protocol aware. Our test-bed results show that all schemes are very susceptible to constant and random jamming. We find that time-triggered control schemes are just as susceptible to protocol aware jamming, where some event-triggered control schemes are completely resilient to protocol aware jamming. Finally, we further enhance the resilience of an event-triggered control scheme through the addition of a dynamical estimator that estimates lost or corrupted data.

2019-02-08
Olegario, Cielito C., Coronel, Andrei D., Medina, Ruji P., Gerardo, Bobby D..  2018.  A Hybrid Approach Towards Improved Artificial Neural Network Training for Short-Term Load Forecasting. Proceedings of the 2018 International Conference on Data Science and Information Technology. :53-58.

The power of artificial neural networks to form predictive models for phenomenon that exhibit non-linear relationships is a given fact. Despite this advantage, artificial neural networks are known to suffer drawbacks such as long training times and computational intensity. The researchers propose a two-tiered approach to enhance the learning performance of artificial neural networks for phenomenon with time series where data exhibits predictable changes that occur every calendar year. This paper focuses on the initial results of the first phase of the proposed algorithm which incorporates clustering and classification prior to application of the backpropagation algorithm. The 2016–2017 zonal load data of France is used as the data set. K-means is chosen as the clustering algorithm and a comparison is made between Naïve Bayes and k-Nearest Neighbors to determine the better classifier for this data set. The initial results show that electrical load behavior is not necessarily reflective of calendar clustering even without using the min-max temperature recorded during the inclusive months. Simulating the day-type classification process using one cluster, initial results show that the k-nearest neighbors outperforms the Naïve Bayes classifier for this data set and that the best feature to be used for classification into day type is the daily min-max load. These classified load data is expected to reduce training time and improve the overall performance of short-term load demand predictive models in a future paper.

2020-10-06
Januário, Fábio, Cardoso, Alberto, Gil, Paulo.  2018.  Resilience Enhancement through a Multi-agent Approach over Cyber-Physical Systems. 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE). :231—236.

Cyber-physical systems are an important component of most industrial infrastructures that allow the integration of control systems with state of the art information technologies. These systems aggregate distinct communication platforms and networked devices with different capabilities. This integration, has brought into play new uncertainties, not only from the tangible physical world, but also from a cyber space perspective. In light of this situation, awareness and resilience are invaluable properties of these kind of systems. The present work proposes an architecture based on a distributed middleware that relying on a hierarchical multi-agent framework for resilience enhancement. The proposed architecture takes into account physical and cyber vulnerabilities and guarantee state and context awareness, and a minimum level of acceptable operation, in response to physical disturbances and malicious attacks. This framework was evaluated on an IPv6 test-bed comprising several distributed devices, where performance and communication links health are analysed. Results from tests prove the relevance and benefits of the proposed approach.

2020-09-28
Gallo, Pierluigi, Pongnumkul, Suporn, Quoc Nguyen, Uy.  2018.  BlockSee: Blockchain for IoT Video Surveillance in Smart Cities. 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1–6.
The growing demand for safety in urban environments is supported by monitoring using video surveillance. The need to analyze multiple video-flows from different cameras deployed around the city by heterogeneous owners introduces vulnerabilities and privacy issues. Video frames, timestamps, and camera settings can be digitally manipulated by malicious users; the positions of cameras, their orientation and their mechanical settings can be physically manipulated. Digital and physical manipulations may have several effects, including the change of the observed scene and the potential violation of neighbors' privacy. To face these risks, we introduce BlockSee, a blockchain-based video surveillance system that jointly provides validation and immutability to camera settings and surveillance videos, making them readily available to authorized users in case of events. The encouraging results obtained with BlockSee pave the way to new distributed city-wide monitoring systems.
Hale, Matthew, Jones, Austin, Leahy, Kevin.  2018.  Privacy in Feedback: The Differentially Private LQG. 2018 Annual American Control Conference (ACC). :3386–3391.
Information communicated within cyber-physical systems (CPSs) is often used in determining the physical states of such systems, and malicious adversaries may intercept these communications in order to infer future states of a CPS or its components. Accordingly, there arises a need to protect the state values of a system. Recently, the notion of differential privacy has been used to protect state trajectories in dynamical systems, and it is this notion of privacy that we use here to protect the state trajectories of CPSs. We incorporate a cloud computer to coordinate the agents comprising the CPSs of interest, and the cloud offers the ability to remotely coordinate many agents, rapidly perform computations, and broadcast the results, making it a natural fit for systems with many interacting agents or components. Striving for broad applicability, we solve infinite-horizon linear-quadratic-regulator (LQR) problems, and each agent protects its own state trajectory by adding noise to its states before they are sent to the cloud. The cloud then uses these state values to generate optimal inputs for the agents. As a result, private data are fed into feedback loops at each iteration, and each noisy term affects every future state of every agent. In this paper, we show that the differentially private LQR problem can be related to the well-studied linear-quadratic-Gaussian (LQG) problem, and we provide bounds on how agents' privacy requirements affect the cloud's ability to generate optimal feedback control values for the agents. These results are illustrated in numerical simulations.
2020-04-06
Naves, Raphael, Jakllari, Gentian, Khalife, Hicham, Conant, Vania, Beylot, Andre-Luc.  2018.  When Analog Meets Digital: Source-Encoded Physical-Layer Network Coding. 2018 IEEE 19th International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM). :1–9.
We revisit Physical-Layer Network Coding (PLNC) and the reasons preventing it from becoming a staple in wireless networks. We identify its strong coupling to the Two-Way Relay Channel (TWRC) as key among them due to its requiring crossing traffic flows and two-hop node coordination. We introduce SE-PLNC, a Source-Encoded PLNC scheme that is traffic pattern independent and involves coordination only among one-hop neighbors, making it significantly more practical to adopt PLNC in multi-hop wireless networks. To accomplish this, SE-PLNC introduces three innovations: it combines bit-level with physical-level network coding, it shifts most of the coding burden from the relay to the source of the PLNC scheme, and it leverages multi-path relaying opportunities available to a particular traffic flow. We evaluate SE-PLNC using theoretical analysis, proof-of-concept implementation on a Universal Software Radio Peripherals (USRP) testbed, and simulations. The theoretical analysis shows the scalability of SE-PLNC and its efficiency in large ad-hoc networks while the testbed experiments its real-life feasibility. Large-scale simulations show that TWRC PLNC barely boosts network throughput while SE-PLNC improves it by over 30%.
2019-02-08
Zhang, Yiwei, Zhang, Weiming, Chen, Kejiang, Liu, Jiayang, Liu, Yujia, Yu, Nenghai.  2018.  Adversarial Examples Against Deep Neural Network Based Steganalysis. Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security. :67-72.

Deep neural network based steganalysis has developed rapidly in recent years, which poses a challenge to the security of steganography. However, there is no steganography method that can effectively resist the neural networks for steganalysis at present. In this paper, we propose a new strategy that constructs enhanced covers against neural networks with the technique of adversarial examples. The enhanced covers and their corresponding stegos are most likely to be judged as covers by the networks. Besides, we use both deep neural network based steganalysis and high-dimensional feature classifiers to evaluate the performance of steganography and propose a new comprehensive security criterion. We also make a tradeoff between the two analysis systems and improve the comprehensive security. The effectiveness of the proposed scheme is verified with the evidence obtained from the experiments on the BOSSbase using the steganography algorithm of WOW and popular steganalyzers with rich models and three state-of-the-art neural networks.

2020-11-04
Peruma, A., Malachowsky, S., Krutz, D..  2018.  Providing an Experiential Cybersecurity Learning Experience through Mobile Security Labs. 2018 IEEE/ACM 1st International Workshop on Security Awareness from Design to Deployment (SEAD). :51—54.

The reality of today's computing landscape already suffers from a shortage of cybersecurity professionals, and this gap only expected to grow. We need to generate interest in this STEM topic early in our student's careers and provide teachers the resources they need to succeed in addressing this gap. To address this shortfall we present Practical LAbs in Security for Mobile Applications (PLASMA), a public set of educational security labs to enable instruction in creation of secure Android apps. These labs include example vulnerable applications, information about each vulnerability, steps for how to repair the vulnerabilities, and information about how to confirm that the vulnerability has been properly repaired. Our goal is for instructors to use these activities in their mobile, security, and general computing courses ranging from secondary school to university settings. Another goal of this project is to foster interest in security and computing through demonstrating its importance. Initial feedback demonstrates the labs' positive effects in enhancing student interest in cybersecurity and acclaim from instructors. All project activities may be found on the project website: http://www.TeachingMobileSecurity.com

2019-02-08
Kumar, Rajesh, Xiaosong, Zhang, Khan, Riaz Ullah, Ahad, Ijaz, Kumar, Jay.  2018.  Malicious Code Detection Based on Image Processing Using Deep Learning. Proceedings of the 2018 International Conference on Computing and Artificial Intelligence. :81-85.

In this study, we have used the Image Similarity technique to detect the unknown or new type of malware using CNN ap- proach. CNN was investigated and tested with three types of datasets i.e. one from Vision Research Lab, which contains 9458 gray-scale images that have been extracted from the same number of malware samples that come from 25 differ- ent malware families, and second was benign dataset which contained 3000 different kinds of benign software. Benign dataset and dataset vision research lab were initially exe- cutable files which were converted in to binary code and then converted in to image files. We obtained a testing ac- curacy of 98% on Vision Research dataset.

2020-09-28
Chen, Yuqi, Poskitt, Christopher M., Sun, Jun.  2018.  Learning from Mutants: Using Code Mutation to Learn and Monitor Invariants of a Cyber-Physical System. 2018 IEEE Symposium on Security and Privacy (SP). :648–660.
Cyber-physical systems (CPS) consist of sensors, actuators, and controllers all communicating over a network; if any subset becomes compromised, an attacker could cause significant damage. With access to data logs and a model of the CPS, the physical effects of an attack could potentially be detected before any damage is done. Manually building a model that is accurate enough in practice, however, is extremely difficult. In this paper, we propose a novel approach for constructing models of CPS automatically, by applying supervised machine learning to data traces obtained after systematically seeding their software components with faults ("mutants"). We demonstrate the efficacy of this approach on the simulator of a real-world water purification plant, presenting a framework that automatically generates mutants, collects data traces, and learns an SVM-based model. Using cross-validation and statistical model checking, we show that the learnt model characterises an invariant physical property of the system. Furthermore, we demonstrate the usefulness of the invariant by subjecting the system to 55 network and code-modification attacks, and showing that it can detect 85% of them from the data logs generated at runtime.
2019-02-08
Wang, Qian, Gao, Mingze, Qu, Gang.  2018.  A Machine Learning Attack Resistant Dual-Mode PUF. Proceedings of the 2018 on Great Lakes Symposium on VLSI. :177-182.

Silicon Physical Unclonable Function (PUF) is arguably the most promising hardware security primitive. In particular, PUFs that are capable of generating a large amount of challenge response pairs (CRPs) can be used in many security applications. However, these CRPs can also be exploited by machine learning attacks to model the PUF and predict its response. In this paper, we first show that, based on data in the public domain, two popular PUFs that can generate CRPs (i.e., arbiter PUF and reconfigurable ring oscillator (RO) PUF) can be broken by simple logistic regression (LR) attack with about 99% accuracy. We then propose a feedback structure to XOR the PUF response with the challenge and challenge the PUF again to generate the response. Results show that this successfully reduces LR's learning accuracy to the lower 50%, but artificial neural network (ANN) learning attack still has an 80% success rate. Therefore, we propose a configurable ring oscillator based dual-mode PUF which works with both odd number of inverters (like the reconfigurable RO PUF) and even number of inverters (like a bistable ring (BR) PUF). Since currently there are no known attacks that can model both RO PUF and BR PUF, the dual-mode PUF will be resistant to modeling attacks as long as we can hide its working mode from the attackers, which we achieve with two practical methods. Finally, we implement the proposed dual-mode PUF on Nexys 4 FPGA boards and collect real measurement to show that it reduces the learning accuracy of LR and ANN to the mid-50% and low 60%, respectively. In addition, it meets the PUF requirements of uniqueness, randomness, and robustness.