Biblio

Found 773 results

Filters: Keyword is Training  [Clear All Filters]
2020-08-28
Jafariakinabad, Fereshteh, Hua, Kien A..  2019.  Style-Aware Neural Model with Application in Authorship Attribution. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). :325—328.

Writing style is a combination of consistent decisions associated with a specific author at different levels of language production, including lexical, syntactic, and structural. In this paper, we introduce a style-aware neural model to encode document information from three stylistic levels and evaluate it in the domain of authorship attribution. First, we propose a simple way to jointly encode syntactic and lexical representations of sentences. Subsequently, we employ an attention-based hierarchical neural network to encode the syntactic and semantic structure of sentences in documents while rewarding the sentences which contribute more to capturing the writing style. Our experimental results, based on four benchmark datasets, reveal the benefits of encoding document information from all three stylistic levels when compared to the baseline methods in the literature.

2020-12-11
Payne, J., Kundu, A..  2019.  Towards Deep Federated Defenses Against Malware in Cloud Ecosystems. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :92—100.

In cloud computing environments with many virtual machines, containers, and other systems, an epidemic of malware can be crippling and highly threatening to business processes. In this vision paper, we introduce a hierarchical approach to performing malware detection and analysis using several recent advances in machine learning on graphs, hypergraphs, and natural language. We analyze individual systems and their logs, inspecting and understanding their behavior with attentional sequence models. Given a feature representation of each system's logs using this procedure, we construct an attributed network of the cloud with systems and other components as vertices and propose an analysis of malware with inductive graph and hypergraph learning models. With this foundation, we consider the multicloud case, in which multiple clouds with differing privacy requirements cooperate against the spread of malware, proposing the use of federated learning to perform inference and training while preserving privacy. Finally, we discuss several open problems that remain in defending cloud computing environments against malware related to designing robust ecosystems, identifying cloud-specific optimization problems for response strategy, action spaces for malware containment and eradication, and developing priors and transfer learning tasks for machine learning models in this area.

2018-08-06
N. D. Truong, J. Y. Haw, S. M. Assad, P. K. Lam, O. Kavehei.  2019.  Machine Learning Cryptanalysis of a Quantum Random Number Generator. IEEE Transactions on Information Forensics and Security. 14:403-414.
Random number generators (RNGs) that are crucial for cryptographic applications have been the subject of adversarial attacks. These attacks exploit environmental information to predict generated random numbers that are supposed to be truly random and unpredictable. Though quantum random number generators (QRNGs) are based on the intrinsic indeterministic nature of quantum properties, the presence of classical noise in the measurement process compromises the integrity of a QRNG. In this paper, we develop a predictive machine learning (ML) analysis to investigate the impact of deterministic classical noise in different stages of an optical continuous variable QRNG. Our ML model successfully detects inherent correlations when the deterministic noise sources are prominent. After appropriate filtering and randomness extraction processes are introduced, our QRNG system, in turn, demonstrates its robustness against ML. We further demonstrate the robustness of our ML approach by applying it to uniformly distributed random numbers from the QRNG and a congruential RNG. Hence, our result shows that ML has potentials in benchmarking the quality of RNG devices.
2020-01-21
Zhang, Jiange, Chen, Yue, Yang, Kuiwu, Zhao, Jian, Yan, Xincheng.  2019.  Insider Threat Detection Based on Adaptive Optimization DBN by Grid Search. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :173–175.

Aiming at the problem that one-dimensional parameter optimization in insider threat detection using deep learning will lead to unsatisfactory overall performance of the model, an insider threat detection method based on adaptive optimization DBN by grid search is designed. This method adaptively optimizes the learning rate and the network structure which form the two-dimensional grid, and adaptively selects a set of optimization parameters for threat detection, which optimizes the overall performance of the deep learning model. The experimental results show that the method has good adaptability. The learning rate of the deep belief net is optimized to 0.6, the network structure is optimized to 6 layers, and the threat detection rate is increased to 98.794%. The training efficiency and the threat detection rate of the deep belief net are improved.

2019-12-30
Toliupa, Serhiy, Tereikovskiy, Ihor, Dychka, Ivan, Tereikovska, Liudmyla, Trush, Alexander.  2019.  The Method of Using Production Rules in Neural Network Recognition of Emotions by Facial Geometry. 2019 3rd International Conference on Advanced Information and Communications Technologies (AICT). :323–327.
The article is devoted to the improvement of neural network means of recognition of emotions on human geometry, which are defined for use in information systems of general purpose. It is shown that modern means of emotional recognition are based on the usual networks of critical disadvantage, because there is a lack of accuracy of recognition under the influence of purchased, characteristic of general-purpose information systems. It is determined that the above remarks relate to the turning of the face and the size of the image. A typical approach to overcoming this disadvantage through training is unacceptable for all protection options that are inappropriate for reasons of duration and compilation of the required training sample. It is proposed to increase the accuracy of recognition by submitting an expert data model to the neural network. An appropriate method for representing expert knowledge is developed. A feature of the method is the use of productive rules and the PNN neural network. Experimental verification of the developed solutions has been carried out. The obtained results allow to increase the efficiency of the termination and disclosure of the set of age networks, the characteristics of which are not presented in the registered statistical data.
2020-05-08
Wang, Dongqi, Shuai, Xuanyue, Hu, Xueqiong, Zhu, Li.  2019.  Research on Computer Network Security Evaluation Method Based on Levenberg-Marquardt Algorithms. 2019 International Conference on Communications, Information System and Computer Engineering (CISCE). :399—402.
As we all know, computer network security evaluation is an important link in the field of network security. Traditional computer network security evaluation methods use BP neural network combined with network security standards to train and simulate. However, because BP neural network is easy to fall into local minimum point in the training process, the evalu-ation results are often inaccurate. In this paper, the LM (Levenberg-Marquard) algorithm is used to optimize the BP neural network. The LM-BP algorithm is constructed and applied to the computer network security evaluation. The results show that compared with the traditional evaluation algorithm, the optimized neural network has the advantages of fast running speed and accurate evaluation results.
2020-08-24
Liang, Dai, Pan, Peisheng.  2019.  Research on Intrusion Detection Based on Improved DBN-ELM. 2019 International Conference on Communications, Information System and Computer Engineering (CISCE). :495–499.
To leverage the feature extraction of DBN and the fast classification and good generalization of ELM, an improved method of DBN-ELM is proposed for intrusion detection. The improved model uses deep belief network (DBN) to train NSL-KDD dataset and feed them back to the extreme learning machine (ELM) for classification. A classifier is connected at each intermediate level of the DBN-ELM. By majority voting on the output of classifier and ELM, the final output is calculated by integration. Experiments show that the improved model increases the classification confidence and accuracy of the classifier. The model has been benchmarked on the NSL-KDD dataset, and the accuracy of the model has been improved to 97.82%, while the false alarm rate has been reduced to 1.81%. Proposed improved model has been also compared with DBN, ELM, DBN-ELM and achieves competitive accuracy.
2020-06-12
Gu, Feng, Zhang, Hong, Wang, Chao, Wu, Fan.  2019.  SAR Image Super-Resolution Based on Noise-Free Generative Adversarial Network. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. :2575—2578.

Deep learning has been successfully applied to the ordinary image super-resolution (SR). However, since the synthetic aperture radar (SAR) images are often disturbed by multiplicative noise known as speckle and more blurry than ordinary images, there are few deep learning methods for the SAR image SR. In this paper, a deep generative adversarial network (DGAN) is proposed to reconstruct the pseudo high-resolution (HR) SAR images. First, a generator network is constructed to remove the noise of low-resolution SAR image and generate HR SAR image. Second, a discriminator network is used to differentiate between the pseudo super-resolution images and the realistic HR images. The adversarial objective function is introduced to make the pseudo HR SAR images closer to real SAR images. The experimental results show that our method can maintain the SAR image content with high-level noise suppression. The performance evaluation based on peak signal-to-noise-ratio and structural similarity index shows the superiority of the proposed method to the conventional CNN baselines.

2020-10-29
Priyamvada Davuluru, Venkata Salini, Narayanan Narayanan, Barath, Balster, Eric J..  2019.  Convolutional Neural Networks as Classification Tools and Feature Extractors for Distinguishing Malware Programs. 2019 IEEE National Aerospace and Electronics Conference (NAECON). :273—278.

Classifying malware programs is a research area attracting great interest for Anti-Malware industry. In this research, we propose a system that visualizes malware programs as images and distinguishes those using Convolutional Neural Networks (CNNs). We study the performance of several well-established CNN based algorithms such as AlexNet, ResNet and VGG16 using transfer learning approaches. We also propose a computationally efficient CNN-based architecture for classification of malware programs. In addition, we study the performance of these CNNs as feature extractors by using Support Vector Machine (SVM) and K-nearest Neighbors (kNN) for classification purposes. We also propose fusion methods to boost the performance further. We make use of the publicly available database provided by Microsoft Malware Classification Challenge (BIG 2015) for this study. Our overall performance is 99.4% for a set of 2174 test samples comprising 9 different classes thereby setting a new benchmark.

2020-11-04
Thomas, L. J., Balders, M., Countney, Z., Zhong, C., Yao, J., Xu, C..  2019.  Cybersecurity Education: From Beginners to Advanced Players in Cybersecurity Competitions. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :149—151.

Cybersecurity competitions have been shown to be an effective approach for promoting student engagement through active learning in cybersecurity. Players can gain hands-on experience in puzzle-based or capture-the-flag type tasks that promote learning. However, novice players with limited prior knowledge in cybersecurity usually found difficult to have a clue to solve a problem and get frustrated at the early stage. To enhance student engagement, it is important to study the experiences of novices to better understand their learning needs. To achieve this goal, we conducted a 4-month longitudinal case study which involves 11 undergraduate students participating in a college-level cybersecurity competition, National Cyber League (NCL) competition. The competition includes two individual games and one team game. Questionnaires and in-person interviews were conducted before and after each game to collect the players' feedback on their experience, learning challenges and needs, and information about their motivation, interests and confidence level. The collected data demonstrate that the primary concern going into these competitions stemmed from a lack of knowledge regarding cybersecurity concepts and tools. Players' interests and confidence can be increased by going through systematic training.

2020-08-28
Perry, Lior, Shapira, Bracha, Puzis, Rami.  2019.  NO-DOUBT: Attack Attribution Based On Threat Intelligence Reports. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :80—85.

The task of attack attribution, i.e., identifying the entity responsible for an attack, is complicated and usually requires the involvement of an experienced security expert. Prior attempts to automate attack attribution apply various machine learning techniques on features extracted from the malware's code and behavior in order to identify other similar malware whose authors are known. However, the same malware can be reused by multiple actors, and the actor who performed an attack using a malware might differ from the malware's author. Moreover, information collected during an incident may contain many clues about the identity of the attacker in addition to the malware used. In this paper, we propose a method of attack attribution based on textual analysis of threat intelligence reports, using state of the art algorithms and models from the fields of machine learning and natural language processing (NLP). We have developed a new text representation algorithm which captures the context of the words and requires minimal feature engineering. Our approach relies on vector space representation of incident reports derived from a small collection of labeled reports and a large corpus of general security literature. Both datasets have been made available to the research community. Experimental results show that the proposed representation can attribute attacks more accurately than the baselines' representations. In addition, we show how the proposed approach can be used to identify novel previously unseen threat actors and identify similarities between known threat actors.

2020-07-09
Nisha, D, Sivaraman, E, Honnavalli, Prasad B.  2019.  Predicting and Preventing Malware in Machine Learning Model. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.

Machine learning is a major area in artificial intelligence, which enables computer to learn itself explicitly without programming. As machine learning is widely used in making decision automatically, attackers have strong intention to manipulate the prediction generated my machine learning model. In this paper we study about the different types of attacks and its countermeasures on machine learning model. By research we found that there are many security threats in various algorithms such as K-nearest-neighbors (KNN) classifier, random forest, AdaBoost, support vector machine (SVM), decision tree, we revisit existing security threads and check what are the possible countermeasures during the training and prediction phase of machine learning model. In machine learning model there are 2 types of attacks that is causative attack which occurs during the training phase and exploratory attack which occurs during the prediction phase, we will also discuss about the countermeasures on machine learning model, the countermeasures are data sanitization, algorithm robustness enhancement, and privacy preserving techniques.

2020-11-04
Khalid, F., Hanif, M. A., Rehman, S., Ahmed, R., Shafique, M..  2019.  TrISec: Training Data-Unaware Imperceptible Security Attacks on Deep Neural Networks. 2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS). :188—193.

Most of the data manipulation attacks on deep neural networks (DNNs) during the training stage introduce a perceptible noise that can be catered by preprocessing during inference, or can be identified during the validation phase. There-fore, data poisoning attacks during inference (e.g., adversarial attacks) are becoming more popular. However, many of them do not consider the imperceptibility factor in their optimization algorithms, and can be detected by correlation and structural similarity analysis, or noticeable (e.g., by humans) in multi-level security system. Moreover, majority of the inference attack rely on some knowledge about the training dataset. In this paper, we propose a novel methodology which automatically generates imperceptible attack images by using the back-propagation algorithm on pre-trained DNNs, without requiring any information about the training dataset (i.e., completely training data-unaware). We present a case study on traffic sign detection using the VGGNet trained on the German Traffic Sign Recognition Benchmarks dataset in an autonomous driving use case. Our results demonstrate that the generated attack images successfully perform misclassification while remaining imperceptible in both “subjective” and “objective” quality tests.

2020-02-17
Wang, Xinda, Sun, Kun, Batcheller, Archer, Jajodia, Sushil.  2019.  Detecting "0-Day" Vulnerability: An Empirical Study of Secret Security Patch in OSS. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :485–492.
Security patches in open source software (OSS) not only provide security fixes to identified vulnerabilities, but also make the vulnerable code public to the attackers. Therefore, armored attackers may misuse this information to launch N-day attacks on unpatched OSS versions. The best practice for preventing this type of N-day attacks is to keep upgrading the software to the latest version in no time. However, due to the concerns on reputation and easy software development management, software vendors may choose to secretly patch their vulnerabilities in a new version without reporting them to CVE or even providing any explicit description in their change logs. When those secretly patched vulnerabilities are being identified by armored attackers, they can be turned into powerful "0-day" attacks, which can be exploited to compromise not only unpatched version of the same software, but also similar types of OSS (e.g., SSL libraries) that may contain the same vulnerability due to code clone or similar design/implementation logic. Therefore, it is critical to identify secret security patches and downgrade the risk of those "0-day" attacks to at least "n-day" attacks. In this paper, we develop a defense system and implement a toolset to automatically identify secret security patches in open source software. To distinguish security patches from other patches, we first build a security patch database that contains more than 4700 security patches mapping to the records in CVE list. Next, we identify a set of features to help distinguish security patches from non-security ones using machine learning approaches. Finally, we use code clone identification mechanisms to discover similar patches or vulnerabilities in similar types of OSS. The experimental results show our approach can achieve good detection performance. A case study on OpenSSL, LibreSSL, and BoringSSL discovers 12 secret security patches.
2020-08-07
Torkzadehmahani, Reihaneh, Kairouz, Peter, Paten, Benedict.  2019.  DP-CGAN: Differentially Private Synthetic Data and Label Generation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). :98—104.
Generative Adversarial Networks (GANs) are one of the well-known models to generate synthetic data including images, especially for research communities that cannot use original sensitive datasets because they are not publicly accessible. One of the main challenges in this area is to preserve the privacy of individuals who participate in the training of the GAN models. To address this challenge, we introduce a Differentially Private Conditional GAN (DP-CGAN) training framework based on a new clipping and perturbation strategy, which improves the performance of the model while preserving privacy of the training dataset. DP-CGAN generates both synthetic data and corresponding labels and leverages the recently introduced Renyi differential privacy accountant to track the spent privacy budget. The experimental results show that DP-CGAN can generate visually and empirically promising results on the MNIST dataset with a single-digit epsilon parameter in differential privacy.
2020-02-18
Huang, Yonghong, Verma, Utkarsh, Fralick, Celeste, Infantec-Lopez, Gabriel, Kumar, Brajesh, Woodward, Carl.  2019.  Malware Evasion Attack and Defense. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :34–38.

Machine learning (ML) classifiers are vulnerable to adversarial examples. An adversarial example is an input sample which is slightly modified to induce misclassification in an ML classifier. In this work, we investigate white-box and grey-box evasion attacks to an ML-based malware detector and conduct performance evaluations in a real-world setting. We compare the defense approaches in mitigating the attacks. We propose a framework for deploying grey-box and black-box attacks to malware detection systems.

2020-09-04
Usama, Muhammad, Qayyum, Adnan, Qadir, Junaid, Al-Fuqaha, Ala.  2019.  Black-box Adversarial Machine Learning Attack on Network Traffic Classification. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :84—89.

Deep machine learning techniques have shown promising results in network traffic classification, however, the robustness of these techniques under adversarial threats is still in question. Deep machine learning models are found vulnerable to small carefully crafted adversarial perturbations posing a major question on the performance of deep machine learning techniques. In this paper, we propose a black-box adversarial attack on network traffic classification. The proposed attack successfully evades deep machine learning-based classifiers which highlights the potential security threat of using deep machine learning techniques to realize autonomous networks.

2020-02-18
Chen, Jiefeng, Wu, Xi, Rastogi, Vaibhav, Liang, Yingyu, Jha, Somesh.  2019.  Towards Understanding Limitations of Pixel Discretization Against Adversarial Attacks. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :480–495.

Wide adoption of artificial neural networks in various domains has led to an increasing interest in defending adversarial attacks against them. Preprocessing defense methods such as pixel discretization are particularly attractive in practice due to their simplicity, low computational overhead, and applicability to various systems. It is observed that such methods work well on simple datasets like MNIST, but break on more complicated ones like ImageNet under recently proposed strong white-box attacks. To understand the conditions for success and potentials for improvement, we study the pixel discretization defense method, including more sophisticated variants that take into account the properties of the dataset being discretized. Our results again show poor resistance against the strong attacks. We analyze our results in a theoretical framework and offer strong evidence that pixel discretization is unlikely to work on all but the simplest of the datasets. Furthermore, our arguments present insights why some other preprocessing defenses may be insecure.

2020-10-29
Lo, Wai Weng, Yang, Xu, Wang, Yapeng.  2019.  An Xception Convolutional Neural Network for Malware Classification with Transfer Learning. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1—5.

In this work, we applied a deep Convolutional Neural Network (CNN) with Xception model to perform malware image classification. The Xception model is a recently developed special CNN architecture that is more powerful with less over- fitting problems than the current popular CNN models such as VGG16. However only a few use cases of the Xception model can be found in literature, and it has never been used to solve the malware classification problem. The performance of our approach was compared with other methods including KNN, SVM, VGG16 etc. The experiments on two datasets (Malimg and Microsoft Malware Dataset) demonstrated that the Xception model can achieve the highest training accuracy than all other approaches including the champion approach, and highest validation accuracy than all other approaches including VGG16 model which are using image-based malware classification (except the champion solution as this information was not provided). Additionally, we proposed a novel ensemble model to combine the predictions from .bytes files and .asm files, showing that a lower logloss can be achieved. Although the champion on the Microsoft Malware Dataset achieved a bit lower logloss, our approach does not require any features engineering, making it more effective to adapt to any future evolution in malware, and very much less time consuming than the champion's solution.

2020-05-18
Zhu, Meng, Yang, Xudong.  2019.  Chinese Texts Classification System. 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT). :149–152.
In this article, we designed an automatic Chinese text classification system aiming to implement a system for classifying news texts. We propose two improved classification algorithms as two different choices for users to choose and then our system uses the chosen method for the obtaining of the classified result of the input text. There are two improved algorithms, one is k-Bayes using hierarchy conception based on NB method in machine learning field and another one adds attention layer to the convolutional neural network in deep learning field. Through experiments, our results showed that improved classification algorithms had better accuracy than based algorithms and our system is useful for making classifying news texts more reasonably and effectively.
2020-07-27
Sandosh, S., Govindasamy, V., Akila, G., Deepasangavy, K., FemidhaBegam, S., Sowmiya, B..  2019.  A Progressive Intrusion Detection System through Event Processing: Challenges and Motivation. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). :1–7.
In this contemporary world, working on internet is a crucial task owing to the security threats in the network like intrusions, injections etc. To recognize and reduce these system attacks, analysts and academicians have introduced Intrusion Detection Systems (IDSs) with the various standards and applications. There are different types of Intrusion Detection Systems (IDS) arise to solve the attacks in various environments. Though IDS is more powerful, it produces the results on the abnormal behaviours said to be attacks with false positive and false negative rates which leads to inaccurate detection rate. The other problem is that, there are more number of attacks arising simultaneously with different behaviour being detected by the IDS with high false positive rates which spoils the strength and lifetime of the system, system's efficiency and fault tolerance. Complex Event Processing (CEP) plays a vital role in handling the alerts as events in real time environment which mainly helps to recognize and reduce the redundant alerts.CEP identifies and analyses relationships between events in real time, allowing the system to proactively take efficient actions to respond to specific alerts.In this study, the tendency of Complex Event Processing (CEP) over Intrusion Detection System (IDS) which offers effective handling of the alerts received from IDS in real time and the promotion of the better detection of the attacks are discussed. The merits and challenges of CEP over IDS described in this paper helps to understand and educate the IDS systems to focus on how to tackle the dynamic attacks and its alerts in real time.
2020-11-20
Goyal, Y., Sharma, A..  2019.  A Semantic Machine Learning Approach for Cyber Security Monitoring. 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC). :439—442.
Security refers to precautions designed to shield the availability and integrity of information exchanged among the digital global community. Information safety measure typically protects the virtual facts from unauthorized sources to get a right of entry to, disclosure, manipulation, alteration or destruction on both hardware and software technologies. According to an evaluation through experts operating in the place of information safety, some of the new cyber-attacks are keep on emerging in all the business processes. As a stop result of the analyses done, it's been determined that although the level of risk is not excessive in maximum of the attacks, it's far a severe risk for important data and the severity of those attacks is prolonged. Prior safety structures has been established to monitor various cyber-threats, predominantly using a gadget processed data or alerts for showing each deterministic and stochastic styles. The principal finding for deterministic patterns in cyber- attacks is that they're neither unbiased nor random over the years. Consequently, the quantity of assaults in the past helps to monitor the range of destiny attacks. The deterministic styles can often be leveraged to generate moderately correct monitoring.
2020-07-30
Wang, Tianhao, Kerschbaum, Florian.  2019.  Attacks on Digital Watermarks for Deep Neural Networks. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2622—2626.
Training deep neural networks is a computationally expensive task. Furthermore, models are often derived from proprietary datasets that have been carefully prepared and labelled. Hence, creators of deep learning models want to protect their models against intellectual property theft. However, this is not always possible, since the model may, e.g., be embedded in a mobile app for fast response times. As a countermeasure watermarks for deep neural networks have been developed that embed secret information into the model. This information can later be retrieved by the creator to prove ownership. Uchida et al. proposed the first such watermarking method. The advantage of their scheme is that it does not compromise the accuracy of the model prediction. However, in this paper we show that their technique modifies the statistical distribution of the model. Using this modification we can not only detect the presence of a watermark, but even derive its embedding length and use this information to remove the watermark by overwriting it. We show analytically that our detection algorithm follows consequentially from their embedding algorithm and propose a possible countermeasure. Our findings shall help to refine the definition of undetectability of watermarks for deep neural networks.
2020-01-02
Mar\'ın, Gonzalo, Casas, Pedro, Capdehourat, Germán.  2019.  Deep in the Dark - Deep Learning-Based Malware Traffic Detection Without Expert Knowledge. 2019 IEEE Security and Privacy Workshops (SPW). :36–42.

With the ever-growing occurrence of networking attacks, robust network security systems are essential to prevent and mitigate their harming effects. In recent years, machine learning-based systems have gain popularity for network security applications, usually considering the application of shallow models, where a set of expert handcrafted features are needed to pre-process the data before training. The main problem with this approach is that handcrafted features can fail to perform well given different kinds of scenarios and problems. Deep Learning models can solve this kind of issues using their ability to learn feature representations from input raw or basic, non-processed data. In this paper we explore the power of deep learning models on the specific problem of detection and classification of malware network traffic, using different representations for the input data. As a major advantage as compared to the state of the art, we consider raw measurements coming directly from the stream of monitored bytes as the input to the proposed models, and evaluate different raw-traffic feature representations, including packet and flow-level ones. Our results suggest that deep learning models can better capture the underlying statistics of malicious traffic as compared to classical, shallow-like models, even while operating in the dark, i.e., without any sort of expert handcrafted inputs.

2019-12-30
Taha, Bilal, Hatzinakos, Dimitrios.  2019.  Emotion Recognition from 2D Facial Expressions. 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE). :1–4.
This work proposes an approach to find and learn informative representations from 2 dimensional gray-level images for facial expression recognition application. The learned features are obtained from a designed convolutional neural network (CNN). The developed CNN enables us to learn features from the images in a highly efficient manner by cascading different layers together. The developed model is computationally efficient since it does not consist of a huge number of layers and at the same time it takes into consideration the overfitting problem. The outcomes from the developed CNN are compared to handcrafted features that span texture and shape features. The experiments conducted on the Bosphours database show that the developed CNN model outperforms the handcrafted features when coupled with a Support Vector Machines (SVM) classifier.