Biblio
Quantum information exchange computer emulator is presented, which takes into consideration imperfections of real quantum channel such as noise and attenuation resulting in the necessity to increase number of photons in the impulse. The Qt Creator C++ program package provides evaluation of the ability to detect unauthorized access as well as an amount of information intercepted by intruder.
Today, maintaining the security of the web application is of great importance. Sites Intermediate Script (XSS) is a security flaw that can affect web applications. This error allows an attacker to add their own malicious code to HTML pages that are displayed to the user. Upon execution of the malicious code, the behavior of the system or website can be completely changed. The XSS security vulnerability is used by attackers to steal the resources of a web browser such as cookies, identity information, etc. by adding malicious Java Script code to the victim's web applications. Attackers can use this feature to force a malicious code worker into a Web browser of a user, since Web browsers support the execution of embedded commands on web pages to enable dynamic web pages. This work has been proposed as a technique to detect and prevent manipulation that may occur in web sites, and thus to prevent the attack of Site Intermediate Script (XSS) attacks. Ayrica has developed four different languages that detect XSS explanations with Asp.NET, PHP, PHP and Ruby languages, and the differences in the detection of XSS attacks in environments provided by different programming languages.
With the exponential growth of Ubiquitous Computing, multiple technologies have gained prominence. One of them is the technology of Wireless Sensor Networks (WSNs). Increasingly used in fields such as smart houses and e-health, it can be said that the sensors have a consolidated room in the current scenario. These sensors, however, have some shortcomings: limited resources, energy and computing power are points of interest. Besides these, there is also concern about the vulnerability of these devices, both physical and logical. To eliminate or at least ameliorating these threats is necessary to create layers of protection. One of the layers is formed by Intrusion Detection Systems (IDS). However, sensors have limited computational capacity, and the development of IDSs for these devices must take into account this constraint. Other important requirements for an Intrusion Detection System are flexibility, efficiency and the ability to adapt to new situations. A tool that enables such capabilities are the Intelligent Agents. With this in mind, this work describes the proposal of a framework for intrusion detection in WSNs based on intelligent agents.
Parameter estimation in wireless sensor networks (WSN) using encrypted non-binary quantized data is studied. In a WSN, sensors transmit their observations to a fusion center through a wireless medium where the observations are susceptible to unauthorized eavesdropping. Encryption approaches for WSNs with fixed threshold binary quantization were previously explored. However, fixed threshold binary quantization limits parameter estimation to scalar parameters. In this paper, we propose a stochastic encryption approach for WSNs that can operate on non-binary quantized observations and has the capability for vector parameter estimation. We extend a binary stochastic encryption approach proposed previously, to a non-binary generalized case. Sensor outputs are quantized using a quantizer with R + 1 levels, where R $ε$ 1, 2, 3,..., encrypted by flipping them with certain flipping probabilities, and then transmitted. Optimal estimators using maximum-likelihood estimation are derived for both a legitimate fusion center (LFC) and a third party fusion center (TPFC) perspectives. We assume the TPFC is unaware of the encryption. Asymptotic analysis of the estimators is performed by deriving the Cramer-Rao lower bound for LFC estimation, and the asymptotic bias and variance for TPFC estimation. Numerical results validating the asymptotic analysis are presented.
Cyber security management of systems in the cyberspace has been a challenging problem for both practitioners and the research community. Their proprietary nature along with the complexity renders traditional approaches rather insufficient and creating the need for the adoption of a holistic point of view. This paper draws upon the principles theory game in order to present a novel systemic approach towards cyber security management, taking into account the complex inter-dependencies and providing cost-efficient defense solutions.
This article examines Usage of Game Theory in The Internet Wide Scan. There is compiled model of “Network Scanning” game. There is described process of players interaction in the coalition antagonistic and network games. The concept of target system's cost is suggested. Moreover, there is suggested its application in network scanning, particularly, when detecting honeypot/honeynet systems.
The work proposes and justifies a processing algorithm of computer security incidents based on the author's signatures of cyberattacks. Attention is also paid to the design pattern SOPKA based on the Russian ViPNet technology. Recommendations are made regarding the establishment of the corporate segment SOPKA, which meets the requirements of Presidential Decree of January 15, 2013 number 31c “On the establishment of the state system of detection, prevention and elimination of the consequences of cyber-attacks on information resources of the Russian Federation” and “Concept of the state system of detection, prevention and elimination of the consequences of cyber-attacks on information resources of the Russian Federation” approved by the President of the Russian Federation on December 12, 2014, No K 1274.
This paper suggests a conceptual mechanism for increasing the security level of the global information community, national information technology infrastructures (e-governments) and private cloud structures, which uses the logical characteristic of IPv6-protocol. The mechanism is based on the properties of the IPv6-header and, in particular, rules of coding IPv6-addresses.
Organizations are exposed to various cyber-attacks. When a component is exploited, the overall computed damage is impacted by the number of components the network includes. This work is focuses on estimating the Target Distribution characteristic of an attacked network. According existing security assessment models, Target Distribution is assessed by using ordinal values based on users' intuitive knowledge. This work is aimed at defining a formula which enables measuring quantitatively the attacked components' distribution. The proposed formula is based on the real-time configuration of the system. Using the proposed measure, firms can quantify damages, allocate appropriate budgets to actual real risks and build their configuration while taking in consideration the risks impacted by components' distribution. The formula is demonstrated as part of a security continuous monitoring system.
Cloud Computing represents one of the most significant shifts in information technology and it enables to provide cloud-based security service such as Security-as-a-service (SECaaS). Improving of the cloud computing technologies, the traditional SIEM paradigm is able to shift to cloud-based security services. In this paper, we propose the SIEM architecture that can be deployed to the SECaaS platform which we have been developing for analyzing and recognizing intelligent cyber-threat based on virtualization technologies.
Botnets are a growing threat to the security of data and services on a global level. They exploit vulnerabilities in networks and host machines to harvest sensitive information, or make use of network resources such as memory or bandwidth in cyber-crime campaigns. Bot programs by nature are largely automated and systematic, and this is often used to detect them. In this paper, we extend upon existing work in this area by proposing a network event correlation method to produce graphs of flows generated by botnets, outlining the implementation and functionality of this approach. We also show how this method can be combined with statistical flow-based analysis to provide a descriptive chain of events, and test on public datasets with an overall success rate of 94.1%.
This study is an empirical study of the factors affecting cyber security breach. Based on the previous researches, factors affecting information security were classified into three aspects of system management, policy and institution, awareness and culture, and measurement items were constructed for each. As a result, outsourcing of information security, data backup, information security awareness by top management and employees were significant influencing variables. The analysis results show that the elements of cognitive aspect are very important. This should be remembered in security that eventually the acceptance of the members who use the security system safely and observe the relevant rules is very important.
Deploying Internet of Things (IoT) applications over wireless networks has become commonplace. The transmission of unencrypted data between IOT devices gives malicious users the opportunity to steal personal information. Despite resource-constrained in the IoT environment, devices need to apply authentication methods to encrypt information and control access rights. This paper introduces a trusted third-party method of identity verification and exchange of keys that minimizes the resources required for communication between devices. A device must be registered in order to obtain a certificate and a session key, for verified identity and encryption communication. Malicious users will not be able to obtain private information or to use it wrongly, as this would be protected by authentication and access control
IoT (Internet of Things) is a network of interconnected devices, designed to collect and exchange data which can then turn it into information, eventually into wisdom. IoT is a region where digital world converges with physical world. With the evolution of IoT, it is expected to create substantial impact on human lives. IoT ecosystem produces and exchanges sizeable data due to which IoT becomes an attractive target for adversary. The large-scale interconnectivity leads to various potential risk related to information security. Security assurance in IoT ecosystem is one of the major challenges to address. In this context, embedded security becomes a key issue in IoT devices which are constrained in terms of processing, power, memory and bandwidth. The focus of this paper is on the recommended design considerations for constrained IoT devices with the objective to achieve security by default. Considering established set of protocols along with best practices during design and development stage can address majority of security challenges.
Redundant capacity in filesystem timestamps is recently proposed in the literature as an effective means for information hiding and data leakage. Here, we evaluate the steganographic capabilities of such channels and propose techniques to aid digital forensics investigation towards identifying and detecting manipulated filesystem timestamps. Our findings indicate that different storage media and interfaces exhibit different timestamp creation patterns. Such differences can be utilized to characterize file source media and increase the analysis capabilities of the incident response process.
Information security policies are not easy to create unless organizations explicitly recognize the various steps required in the development process of an information security policy, especially in institutions of higher education that use enormous amounts of IT. An improper development process or a copied security policy content from another organization might also fail to execute an effective job. The execution could be aimed at addressing an issue such as the non-compliance to applicable rules and regulations even if the replicated policy is properly developed, referenced, cited in laws or regulations and interpreted correctly. A generic framework was proposed to improve and establish the development process of security policies in institutions of higher education. The content analysis and cross-case analysis methods were used in this study in order to gain a thorough understanding of the information security policy development process in institutions of higher education.
Software1 vulnerabilities are closely associated with information systems security, a major and critical field in today's technology. Vulnerabilities constitute a constant and increasing threat for various aspects of everyday life, especially for safety and economy, since the social impact from the problems that they cause is complicated and often unpredictable. Although there is an entire research branch in software engineering that deals with the identification and elimination of vulnerabilities, the growing complexity of software products and the variability of software production procedures are factors contributing to the ongoing occurrence of vulnerabilities, Hence, another area that is being developed in parallel focuses on the study and management of the vulnerabilities that have already been reported and registered in databases. The information contained in such databases includes, a textual description and a number of metrics related to vulnerabilities. The purpose of this paper is to investigate to what extend the assessment of the vulnerability severity can be inferred directly from the corresponding textual description, or in other words, to examine the informative power of the description with respect to the vulnerability severity. For this purpose, text mining techniques, i.e. text analysis and three different classification methods (decision trees, neural networks and support vector machines) were employed. The application of text mining to a sample of 70,678 vulnerabilities from a public data source shows that the description itself is a reliable and highly accurate source of information for vulnerability prioritization.
Hierarchical Graph Neuron (HGN) is an extension of network-centric algorithm called Graph Neuron (GN), which is used to perform parallel distributed pattern recognition. In this research, HGN scheme is used to classify intrusion attacks in computer networks. Patterns of intrusion attacks are preprocessed in three steps: selecting attributes using information gain attribute evaluation, discretizing the selected attributes using entropy-based discretization supervised method, and selecting the training data using K-Means clustering algorithm. After the preprocessing stage, the HGN scheme is then deployed to classify intrusion attack using the KDD Cup 99 dataset. The results of the classification are measured in terms of accuracy rate, detection rate, false positive rate and true negative rate. The test result shows that the HGN scheme is promising and stable in classifying the intrusion attack patterns with accuracy rate reaches 96.27%, detection rate reaches 99.20%, true negative rate below 15.73%, and false positive rate as low as 0.80%.
Hackers create different types of Malware such as Trojans which they use to steal user-confidential information (e.g. credit card details) with a few simple commands, recent malware however has been created intelligently and in an uncontrolled size, which puts malware analysis as one of the top important subjects of information security. This paper proposes an efficient dynamic malware-detection method based on API similarity. This proposed method outperform the traditional signature-based detection method. The experiment evaluated 197 malware samples and the proposed method showed promising results of correctly identified malware.
iOS devices are steadily obtaining popularity of the majority of users because of its some unique advantages in recent years. They can do many things that have been done on a desktop computer or laptop. With the increase in the use of mobile devices by individuals, organizations and government, there are many problems with information security especially some sensitive data related to users. As we all known, encryption algorithm play a significant role in data security. In order to prevent data being intercepted and being leaked during communication, in this paper, we adopted DES encryption algorithm that is fast, simple and suitable for large amounts of data of encryption to encrypt the data of iOS client and adopted the ECC encryption algorithms that was used to overcome the shortcoming of exchanging keys in a securing way before communications. In addition, we should also consider the application isolation and security mechanism of iOS that these features also protect the data securing to some extent. Namely, we propose an encryption algorithm combined the strengths of DES and ECC and make full use of the advantages of hybrid algorithm. Then, we tested and evaluated the performances of the suggested cryptography mechanism within the mobile platform of iOS. The results show that the algorithm has fairly efficiency in practical applications and strong anti-attack ability and it also improves the security and efficiency in data transmission.
Establishing and operating an Information Security Management System (ISMS) to protect information values and information systems is in itself a challenge for larger enterprises and small and medium sized businesses alike. A high level of automation is required to reduce operational efforts to an acceptable level when implementing an ISMS. In this paper we present the ADAMANT framework to increase automation in information security management as a whole by establishing a continuous risk-driven and context-aware ISMS that not only automates security controls but considers all highly interconnected information security management tasks. We further illustrate how ADAMANT is suited to establish an ISO 27001 compliant ISMS for small and medium-sized enterprises and how not only the monitoring of security controls but a majority of ISMS related activities can be supported through automated process execution and workflow enactment.