Biblio
Nowadays, the proliferation of smart, communication-enable devices is opening up many new opportunities of pervasive applications. A major requirement of pervasive applications is to be secured. The complexity to secure pervasive systems is to address a end-to-end security level: from the device to the services according to the entire life cycle of devices, applications and platform. In this article, we propose a solution combining both hardware and software elements to secure communications between devices and pervasive platform based on certificates issued from a Public Key Infrastructure. Our solution is implemented and validated with a real device extended by a secure element and our own Public Key Infrastructure.
Network-on-Chip (NoC) architecture is the communication heart of the processing cores in Multiprocessors System-on-Chip (MPSoC), where messages are routed from a source to a destination through intermediate nodes. Therefore, NoC has become a target to security attacks. By experiencing outsourcing design, NoC can be infected with a malicious Hardware Trojans (HTs) which potentially degrade the system performance or leave a backdoor for secret key leaking. In this paper, we propose a HT model that applies a denial of service attack by misrouting the packets, which causes deadlock and consequently degrading the NoC performance. We present a secure routing algorithm that provides a runtime HT detection and avoiding scheme. Results show that our proposed model has negligible overhead in area and power, 0.4% and 0.6%, respectively.
Building memory protection mechanisms into embedded hardware is attractive because it has the potential to neutralize a host of software-based attacks with relatively small performance overhead. A hardware monitor, being at the lowest level of the system stack, is more difficult to bypass than a software monitor and hardware-based protections are also potentially more fine-grained than is possible in software: an individual instruction executing on a processor may entail multiple memory accesses, all of which may be tracked in hardware. Finally, hardware-based protection can be performed without the necessity of altering application binaries. This article presents a proof-of-concept codesign of a small embedded processor with a hardware monitor protecting against ROP-style code reuse attacks. While the case study is small, it indicates, we argue, an approach to rapid-prototyping runtime monitors in hardware that is quick, flexible, and extensible as well as being amenable to formal verification.
The Internet-of-things (IoT) holds a lot of benefits to our lives by removing menial tasks and improving efficiency of everyday objects. You are trusting your personal data and device control to the manufactures and you may not be aware of how much risk your putting your privacy at by sending your data over the internet. The internet-of-things may not be as secure as you think when the devices used are constrained by a lot of variables which attackers can exploit to gain access to your data / device and anything they connected to and as the internet-of-things is all about connecting devices together one weak point can be all it takes to gain full access. In this paper we have a look at the current advances in IoT security and the most efficient methods to protect IoT devices.
Modern processors use branch prediction and speculative execution to maximize performance. For example, if the destination of a branch depends on a memory value that is in the process of being read, CPUs will try to guess the destination and attempt to execute ahead. When the memory value finally arrives, the CPU either discards or commits the speculative computation. Speculative logic is unfaithful in how it executes, can access the victim's memory and registers, and can perform operations with measurable side effects. Spectre attacks involve inducing a victim to speculatively perform operations that would not occur during correct program execution and which leak the victim's confidential information via a side channel to the adversary. This paper describes practical attacks that combine methodology from side channel attacks, fault attacks, and return-oriented programming that can read arbitrary memory from the victim's process. More broadly, the paper shows that speculative execution implementations violate the security assumptions underpinning numerous software security mechanisms, including operating system process separation, containerization, just-in-time (JIT) compilation, and countermeasures to cache timing and side-channel attacks. These attacks represent a serious threat to actual systems since vulnerable speculative execution capabilities are found in microprocessors from Intel, AMD, and ARM that are used in billions of devices. While makeshift processor-specific countermeasures are possible in some cases, sound solutions will require fixes to processor designs as well as updates to instruction set architectures (ISAs) to give hardware architects and software developers a common understanding as to what computation state CPU implementations are (and are not) permitted to leak.
Return Oriented Programming is one of the most important software security challenges nowadays. It exploits memory vulnerabilities to control the state of the program and hijacks its control flow. Existing defenses usually focus on how to protect the control flow or face the challenge of how to maintain the taint markings for memory data. In this paper, we directly focus on the adversary-controlled states, simplify the classic dynamic taint analysis method to only track registers and propose Hardware-based Adversary-controlled States Tracking (HAST). HAST dynamically tracks registers that may be controlled by the adversary to detect ROP attack. It is transparent to user application and makes few modifications to existing hardware. Our evaluation demonstrates that HAST will introduce almost no performance overhead and can effectively detect ROP attacks without false positives on the tested common Linux applications.
This paper presents a multilayer protection approach to guard programs against Return-Oriented Programming (ROP) attacks. Upper layers validate most of a program's control flow at a low computational cost; thus, not compromising runtime. Lower layers provide strong enforcement guarantees to handle more suspicious flows; thus, enhancing security. Our multilayer system combines techniques already described in the literature with verifications that we introduce in this paper. We argue that modern versions of x86 processors already provide the microarchitectural units necessary to implement our technique. We demonstrate the effectiveness of our multilayer protection on a extensive suite of benchmarks, which includes: SPEC CPU2006; the three most popular web browsers; 209 benchmarks distributed with LLVM and four well-known systems shown to be vulnerable to ROP exploits. Our experiments indicate that we can protect programs with almost no overhead in practice, allying the good performance of lightweight security techniques with the high dependability of heavyweight approaches.
Despite decades of research on software diversification, only address space layout randomization has seen widespread adoption. Code randomization, an effective defense against return-oriented programming exploits, has remained an academic exercise mainly due to i) the lack of a transparent and streamlined deployment model that does not disrupt existing software distribution norms, and ii) the inherent incompatibility of program variants with error reporting, whitelisting, patching, and other operations that rely on code uniformity. In this work we present compiler-assisted code randomization (CCR), a hybrid approach that relies on compiler-rewriter cooperation to enable fast and robust fine-grained code randomization on end-user systems, while maintaining compatibility with existing software distribution models. The main concept behind CCR is to augment binaries with a minimal set of transformation-assisting metadata, which i) facilitate rapid fine-grained code transformation at installation or load time, and ii) form the basis for reversing any applied code transformation when needed, to maintain compatibility with existing mechanisms that rely on referencing the original code. We have implemented a prototype of this approach by extending the LLVM compiler toolchain, and developing a simple binary rewriter that leverages the embedded metadata to generate randomized variants using basic block reordering. The results of our experimental evaluation demonstrate the feasibility and practicality of CCR, as on average it incurs a modest file size increase of 11.46% and a negligible runtime overhead of 0.28%, while it is compatible with link-time optimization and control flow integrity.
In the last few decades, the relative simplicity of the logistic map made it a widely accepted point in the consideration of chaos, which is having the good properties of unpredictability, sensitiveness in the key values and ergodicity. Further, the system parameters fit the requirements of a cipher widely used in the field of cryptography, asymmetric and symmetric key chaos based cryptography, and for pseudorandom sequence generation. Also, the hardware-based embedded system is configured on FPGA devices for high performance. In this paper, a novel stream cipher using chaotic logistic map is proposed. The two chaotic logistic maps are coded using Verilog HDL and implemented on commercially available FPGA hardware using Xilinx device: XC3S250E for the part: FT256 and operated at frequency of 62.20 MHz to generate the non-recursive key which is used in key scheduling of pseudorandom number generation (PRNG) to produce the key stream. The realization of proposed cryptosystem in this FPGA device accomplishes the improved efficiency equal to 0.1186 Mbps/slice. Further, the generated binary sequence from the experiment is analyzed for X-power, thermal analysis, and randomness tests are performed using NIST statistical.
This paper introduces a new methodology to generate additional hardware security in commercial off-the-shelf (COTS) system-on-a-chip (SoC) integrated circuits (ICs) that have already been fabricated and packaged. On-chip analog hardware blocks such as analog to digital converters (ADCs), digital to analog converters (DACs) and comparators residing within an SoC are repurposed and connected to one another to generate unique physically unclonable function (PUF) responses. The PUF responses are digitized and processed on-chip to create keys for use in encryption and device authentication activities. Key generation and processing algorithms are presented that minimize the effects of voltage and temperature fluctuations to maximize the repeatability of a key within a device. Experimental results utilizing multiple on-chip analog blocks inside a common COTS microcontroller show reliable key generation with minimal overhead.
Assertions are helpful in program analysis, such as software testing and verification. The most challenging part of automatically recommending assertions is to design the assertion patterns and to insert assertions in proper locations. In this paper, we develop Weak-Assert, a weakness-oriented assertion recommendation toolkit for program analysis of C code. A weakness-oriented assertion is an assertion which can help to find potential program weaknesses. Weak-Assert uses well-designed patterns to match the abstract syntax trees of source code automatically. It collects significant messages from trees and inserts assertions into proper locations of programs. These assertions can be checked by using program analysis techniques. The experiments are set up on Juliet test suite and several actual projects in Github. Experimental results show that Weak-Assert helps to find 125 program weaknesses in 26 actual projects. These weaknesses are confirmed manually to be triggered by some test cases.
Advancements in semiconductor domain gave way to realize numerous applications in Video Surveillance using Computer vision and Deep learning, Video Surveillances in Industrial automation, Security, ADAS, Live traffic analysis etc. through image understanding improves efficiency. Image understanding requires input data with high precision which is dependent on Image resolution and location of camera. The data of interest can be thermal image or live feed coming for various sensors. Composite(CVBS) is a popular video interface capable of streaming upto HD(1920x1080) quality. Unlike high speed serial interfaces like HDMI/MIPI CSI, Analog composite video interface is a single wire standard supporting longer distances. Image understanding requires edge detection and classification for further processing. Sobel filter is one the most used edge detection filter which can be embedded into live stream. This paper proposes Zynq FPGA based system design for video surveillance with Sobel edge detection, where the input Composite video decoded (Analog CVBS input to YCbCr digital output), processed in HW and streamed to HDMI display simultaneously storing in SD memory for later processing. The HW design is scalable for resolutions from VGA to Full HD for 60fps and 4K for 24fps. The system is built on Xilinx ZC702 platform and TVP5146 to showcase the functional path.
Since the application mode of cryptography technology currently has different types in the cloud environment, a novel cryptography cloud framework was proposed, due to the non-expandability of cryptography resources. Through researching on the application models of the current encryption technology, the cryptography service demand under the cloud environment and the virtual structure of the cloud cryptography machine, this paper designed the framework of the cryptography cloud framework that provides cryptography services with the cloud computing mode. the design idea of the framework is expounded from two aspects include the function of modules and service flow of cryptography cloud, which resulted in the improvement of the flexibility of the application of cryptography technology in the cloud environment. Through the analysis of system function and management mode, it illustrated the availability and security of cryptography cloud framework. It was proved that cryptography cloud has the characteristics of high-availability in the implementation and experiment, and it can satisfy cryptography service demand in the cloud environment.
Nowadays, the rapid development of the Internet of Things facilitates human life and work, while it also brings great security risks to the society due to the frequent occurrence of various security issues. IoT device has the characteristics of large-scale deployment and single responsibility application, which makes it easy to cause a chain reaction and results in widespread privacy leakage and system security problems when the software vulnerability is identified. It is difficult to guarantee that there is no security hole in the IoT operating system which is usually designed for MCU and has no kernel mode. An alternative solution is to identify the security issues in the first time when the system is hijacked and suspend the suspicious task before it causes irreparable damage. This paper proposes KLRA (A Kernel Level Resource Auditing Tool) for IoT Operating System Security This tool collects the resource-sensitive events in the kernel and audit the the resource consumption pattern of the system at the same time. KLRA can take fine-grained events measure with low cost and report the relevant security warning in the first time when the behavior of the system is abnormal compared with daily operations for the real responsibility of this device. KLRA enables the IoT operating system for MCU to generate the security early warning and thereby provides a self-adaptive heuristic security mechanism for the entire IoT system.
Hardware information flow analysis detects security vulnerabilities resulting from unintended design flaws, timing channels, and hardware Trojans. These information flow models are typically generated in a general way, which includes a significant amount of redundancy that is irrelevant to the specified security properties. In this work, we propose a property specific approach for information flow security. We create information flow models tailored to the properties to be verified by performing a property specific search to identify security critical paths. This helps find suspicious signals that require closer inspection and quickly eliminates portions of the design that are free of security violations. Our property specific trimming technique reduces the complexity of the security model; this accelerates security verification and restricts potential security violations to a smaller region which helps quickly pinpoint hardware security vulnerabilities.
The Internet of Things (IoT) is an emerging technology, an extension of the traditional Internet which make everything is connected each other based on Radio Frequency Identification (RFID), Sensor, GPS or Machine to Machine technologies, etc. The security issues surrounding IoT have been of detrimental impact to its development and has consequently attracted research interest. However, there are very few approaches which assess the security of IoT from the perspective of an attacker. Penetration testing is widely used to evaluate traditional internet or systems security to date and it normally spends numerous cost and time. In this paper, we analyze the security problems of IoT and propose a penetration testing approach and its automation based on belief-desire-intention (BDI) model to evaluate the security of the IoT.
Aiming at the problem that there is little research on firmware vulnerability mining and the traditional method of vulnerability mining based on fuzzing test is inefficient, this paper proposed a new method of mining vulnerabilities in industrial control system firmware. Based on taint analysis technology, this method can construct test cases specifically for the variables that may trigger vulnerabilities, thus reducing the number of invalid test cases and improving the test efficiency. Experiment result shows that this method can reduce about 23 % of test cases and can effectively improve test efficiency.
State-of-the-art system-on-chip (SoC) field programmable gate arrays (FPGAs) integrate hard powerful ARM processor cores and the reconfigurable logic fabric on a single chip in addition to many commonly needed high performance and high-bandwidth peripherals. The increasing reliance on untrustworthy third-party IP (3PIP) cores, including both hardware and software in FPGA-based embedded systems has made the latter increasingly vulnerable to security attacks. Detection of trojans in 3PIPs is extremely difficult to current static detection methods since there is no golden reference model for 3PIPs. Moreover, many FPGA-based embedded systems do not have the support of security services typically found in operating systems. In this paper, we present our run-time, low-cost, and low-latency hardware and software based solution for protecting data stored in on-chip memory blocks, which has attracted little research attention. The implemented memory protection design consists of a hierarchical top-down structure and controls memory access from software IPs running on the processor and hardware IPs running in the FPGA, based on a set of rules or access rights configurable at run time. Additionally, virtual addressing and encryption of data for each memory help protect confidentiality of data in case of a failure of the memory protection unit, making it hard for the attacker to gain access to the data stored in the memory. The design is implemented and tested on the Intel (Altera) DE1-SoC board featuring a SoC FPGA that integrates a dual-core ARM processor with reconfigurable logic and hundreds of memory blocks. The experimental results and case studies show that the protection model is successful in eliminating malicious IPs from the system without need for reconfiguration of the FPGA. It prevents unauthorized accesses from untrusted IPs, while arbitrating access from trusted IPs generating legal memory requests, without incurring a serious area or latency penalty.
In spite of numerous advantages of biometrics-based personal authentication systems over traditional security systems based on token or knowledge, they are vulnerable to attacks that can decrease their security considerably. In this paper, we propose a new hardware solution to protect biometric templates such as fingerprint. The proposed scheme is based on chaotic N × N grid multi-scroll system and it is implemented on Xilinx FPGA. The hardware implementation is achieved by applying numerical solution methods in our study, we use EM (Euler Method). Simulation and experimental results show that the proposed scheme allows a low cost image encryption for embedded systems while still providing a good trade-off between performance and hardware resources. Indeed, security analysis performed to the our scheme, is strong against known different attacks, such as: brute force, statistical, differential, and entropy. Therefore, the proposed chaos-based multiscroll encryption algorithm is suitable for use in securing embedded biometric systems.
Combining conventional power networks and information communication technologies forms smart grid concept. Researches on the evolution of conventional power grid system into smart grid continue thanks to the development of communication and information technologies hopefully. Testing of smart grid systems is usually performed in simulation environments. However, achieving more effective real-world implementations, a smart grid application needs a real-world test environment, called testbed. Smart grid, which is the combination of conventional electricity line with information communication technologies, is vulnerable to cyber-attacks and this is a key challenge improving the smart grid. The vulnerabilities to cyber-attacks in smart grid arise from information communication technologies' nature inherently. Testbeds, which cyber-security researches and studies can be performed, are needed to find effective solutions against cyber-attacks capabilities in smart grid practices. In this paper, an evaluation of existing smart grid testbeds with the capability of cyber security is presented. First, background, domains, research areas and security issues in smart grid are introduced briefly. Then smart grid testbeds and features are explained. Also, existing security-oriented testbeds and cyber-attack testing capabilities of testbeds are evaluated. Finally, we conclude the study and give some recommendations for security-oriented testbed implementations.
Hardware Trojans, implantable at a myriad of points within the supply chain, are difficult to detect and identify. By emulating systems on programmable hardware, the authors have created a tool from which to create and evaluate Trojan attack signatures and therefore enable better Trojan detection (for in-service systems) and prevention (for in-design systems).