Visible to the public Biblio

Found 639 results

Filters: Keyword is Hardware  [Clear All Filters]
2020-02-17
Khalil, Kasem, Eldash, Omar, Kumar, Ashok, Bayoumi, Magdy.  2019.  Self-Healing Approach for Hardware Neural Network Architecture. 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS). :622–625.
Neural Network is used in many applications and guarding its performance against faults is a research challenge. Self-healing neural network is a promising concept for achieving reliability, which is the ability to detect and fix a fault in the system automatically. Most of the current self-healing neural network are based on replication of hardware nodes which causes significant area overhead. The proposed self-healing approach results in a modest area overhead and it is suitable for complex neural network. The proposed method is based on a shared operation and a spare node in each layer which compensates for any faulty node in the layer. Each faulty node will be compensated by its neighbor node, and the neighbor node performs the faulty node as well as its own operations sequentially. In the case the neighbor is faulty, the spare node will compensate for it. The proposed method is implemented using VHDL and the simulation results are obtained using Altira 10 GX FPGA for a different number of nodes. The area overhead is very small for a complex network. The reliability of the proposed method is studied and compared with the traditional neural network.
Meijer, Carlo, van Gastel, Bernard.  2019.  Self-Encrypting Deception: Weaknesses in the Encryption of Solid State Drives. 2019 IEEE Symposium on Security and Privacy (SP). :72–87.
We have analyzed the hardware full-disk encryption of several solid state drives (SSDs) by reverse engineering their firmware. These drives were produced by three manufacturers between 2014 and 2018, and are both internal models using the SATA and NVMe interfaces (in a M.2 or 2.5" traditional form factor) and external models using the USB interface. In theory, the security guarantees offered by hardware encryption are similar to or better than software implementations. In reality, we found that many models using hardware encryption have critical security weaknesses due to specification, design, and implementation issues. For many models, these security weaknesses allow for complete recovery of the data without knowledge of any secret (such as the password). BitLocker, the encryption software built into Microsoft Windows will rely exclusively on hardware full-disk encryption if the SSD advertises support for it. Thus, for these drives, data protected by BitLocker is also compromised. We conclude that, given the state of affairs affecting roughly 60% of the market, currently one should not rely solely on hardware encryption offered by SSDs and users should take additional measures to protect their data.
Moquin, S. J., Kim, SangYun, Blair, Nicholas, Farnell, Chris, Di, Jia, Mantooth, H. Alan.  2019.  Enhanced Uptime and Firmware Cybersecurity for Grid-Connected Power Electronics. 2019 IEEE CyberPELS (CyberPELS). :1–6.
A distributed energy resource prototype is used to show cybersecurity best practices. These best practices include straightforward security techniques, such as encrypted serial communication. The best practices include more sophisticated security techniques, such as a method to evaluate and respond to firmware integrity at run-time. The prototype uses embedded Linux, a hardware-assisted monitor, one or more digital signal processors, and grid-connected power electronics. Security features to protect communication, firmware, power flow, and hardware are developed. The firmware run-time integrity security is presently evaluated, and shown to maintain power electronics uptime during firmware updating. The firmware run-time security feature can be extended to allow software rejuvenation, multi-mission controls, and greater flexibility and security in controls.
2020-02-10
Koutroumpouchos, Nikos, Ntantogian, Christoforos, Menesidou, Sofia-Anna, Liang, Kaitai, Gouvas, Panagiotis, Xenakis, Christos, Giannetsos, Thanassis.  2019.  Secure Edge Computing with Lightweight Control-Flow Property-based Attestation. 2019 IEEE Conference on Network Softwarization (NetSoft). :84–92.

The Internet of Things (IoT) is rapidly evolving, while introducing several new challenges regarding security, resilience and operational assurance. In the face of an increasing attack landscape, it is necessary to cater for the provision of efficient mechanisms to collectively verify software- and device-integrity in order to detect run-time modifications. Towards this direction, remote attestation has been proposed as a promising defense mechanism. It allows a third party, the verifier, to ensure the integrity of a remote device, the prover. However, this family of solutions do not capture the real-time requirements of industrial IoT applications and suffer from scalability and efficiency issues. In this paper, we present a lightweight dynamic control-flow property-based attestation architecture (CFPA) that can be applied on both resource-constrained edge and cloud devices and services. It is a first step towards a new line of security mechanisms that enables the provision of control-flow attestation of only those specific, critical software components that are comparatively small, simple and limited in function, thus, allowing for a much more efficient verification. Our goal is to enhance run-time software integrity and trustworthiness with a scalable and decentralized solution eliminating the need for federated infrastructure trust. Based on our findings, we posit open issues and challenges, and discuss possible ways to address them, so that security do not hinder the deployment of intelligent edge computing systems.

Bansal, Bhawana, Sharma, Monika.  2019.  Client-Side Verification Framework for Offline Architecture of IoT. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :1044–1050.
Internet of things is a network formed between two or more devices through internet which helps in sharing data and resources. IoT is present everywhere and lot of applications in our day-to-day life such as smart homes, smart grid system which helps in reducing energy consumption, smart garbage collection to make cities clean, smart cities etc. It has some limitations too such as concerns of security of the network and the cost of installations of the devices. There have been many researches proposed various method in improving the IoT systems. In this paper, we have discussed about the scope and limitations of IoT in various fields and we have also proposed a technique to secure offline architecture of IoT.
Naseem, Faraz, Babun, Leonardo, Kaygusuz, Cengiz, Moquin, S.J., Farnell, Chris, Mantooth, Alan, Uluagac, A. Selcuk.  2019.  CSPoweR-Watch: A Cyber-Resilient Residential Power Management System. 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :768–775.

Modern Energy Management Systems (EMS) are becoming increasingly complex in order to address the urgent issue of global energy consumption. These systems retrieve vital information from various Internet-connected resources in a smart grid to function effectively. However, relying on such resources results in them being susceptible to cyber attacks. Malicious actors can exploit the interconnections between the resources to perform nefarious tasks such as modifying critical firmware, sending bogus sensor data, or stealing sensitive information. To address this issue, we propose a novel framework that integrates PowerWatch, a solution that detects compromised devices in the smart grid with Cyber-secure Power Router (CSPR), a smart energy management system. The goal is to ascertain whether or not such a device has operated maliciously. To achieve this, PowerWatch utilizes a machine learning model that analyzes information from system and library call lists extracted from CSPR in order to detect malicious activity in the EMS. To test the efficacy of our framework, a number of unique attack scenarios were performed on a realistic testbed that comprises functional versions of CSPR and PowerWatch to monitor the electrical environment for suspicious activity. Our performance evaluation investigates the effectiveness of this first-of-its-kind merger and provides insight into the feasibility of developing future cybersecure EMS. The results of our experimental procedures yielded 100% accuracy for each of the attack scenarios. Finally, our implementation demonstrates that the integration of PowerWatch and CSPR is effective and yields minimal overhead to the EMS.

Ruchkin, Vladimir, Fulin, Vladimir, Pikulin, Dmitry, Taganov, Aleksandr, Kolesenkov, Aleksandr, Ruchkina, Ekaterina.  2019.  Heterogenic Multi-Core System on Chip for Virtual Based Security. 2019 8th Mediterranean Conference on Embedded Computing (MECO). :1–5.
The paper describes the process of coding information in the heterogenic multi-core system on chip for virtual-based security designed For image processing, signal processing and neural networks emulation. The coding of information carried out in assembly language according to the GOST. This is an implementation of the GOST - a standard symmetric key block cipher has a 64-bit block size and 256-bit key size.
Ramu, Gandu, Mishra, Zeesha, Acharya, B..  2019.  Hardware implementation of Piccolo Encryption Algorithm for constrained RFID application. 2019 9th Annual Information Technology, Electromechanical Engineering and Microelectronics Conference (IEMECON). :85–89.
The deployment of smart devices in IoT applications are increasing with tremendous pace causing severe security concerns, as it trade most of private information. To counter that security issues in low resource applications, lightweight cryptographic algorithms have been introduced in recent past. In this paper we propose efficient hardware architecture of piccolo lightweight algorithm uses 64 bits block size with variable key size of length 80 and 128 bits. This paper introduces novel hardware architecture of piccolo-80, to supports high speed RFID security applications. Different design strategies are there to optimize the hardware metrics trade-off for particular application. The algorithm is implemented on different family of FPGAs with different devices to analyze the performance of design in 4 input LUTs and 6 input LUTs implementations. In addition, the results of hardware design are evaluated and compared with the most relevant lightweight block ciphers, shows the proposed architecture finds its utilization in terms of speed and area optimization from the hardware resources. The increment in throughput with optimized area of this architecture suggests that piccolo can applicable to implement for ultra-lightweight applications also.
Pan, Yuyang, Yin, Yanzhao, Zhao, Yulin, Wu, Liji, Zhang, Xiangmin.  2019.  A New Information Extractor for Profiled DPA and Implementation of High Order Masking Circuit. 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :258–262.
Profiled DPA is a new method combined with machine learning method in side channel attack which is put forward by Whitnall in CHES 2015.[1]The most important part lies in effectiveness of extracting information. This paper introduces a new rule Explained Local Variance (ELV) to extract information in profiled stage for profiled DPA. It attracts information effectively and shields noise to get better accuracy than the original rule. The ELV enables an attacker to use less power traces to get the same result as before. It also leads to 94.6% space reduction and 29.2% time reduction for calculation. For security circuit implementation, a high order masking scheme in modelsim is implemented. A new exchange network is put forward. 96.9% hardware resource is saved due to the usage of this network.
Hu, Taifeng, Wu, Liji, Zhang, Xiangmin, Yin, Yanzhao, Yang, Yijun.  2019.  Hardware Trojan Detection Combine with Machine Learning: an SVM-based Detection Approach. 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :202–206.
With the application of integrated circuits (ICs) appears in all aspects of life, whether an IC is security and reliable has caused increasing worry which is of significant necessity. An attacker can achieve the malicious purpose by adding or removing some modules, so called hardware Trojans (HTs). In this paper, we use side-channel analysis (SCA) and support vector machine (SVM) classifier to determine whether there is a Trojan in the circuit. We use SAKURA-G circuit board with Xilinx SPARTAN-6 to complete our experiment. Results show that the Trojan detection rate is up to 93% and the classification accuracy is up to 91.8475%.
Auer, Lukas, Skubich, Christian, Hiller, Matthias.  2019.  A Security Architecture for RISC-V based IoT Devices. 2019 Design, Automation Test in Europe Conference Exhibition (DATE). :1154–1159.

New IoT applications are demanding for more and more performance in embedded devices while their deployment and operation poses strict power constraints. We present the security concept for a customizable Internet of Things (IoT) platform based on the RISC-V ISA and developed by several Fraunhofer Institutes. It integrates a range of peripherals with a scalable computing subsystem as a three dimensional System-in-Package (3D-SiP). The security features aim for a medium security level and target the requirements of the IoT market. Our security architecture extends given implementations to enable secure deployment, operation, and update. Core security features are secure boot, an authenticated watchdog timer, and key management. The Universal Sensor Platform (USeP) SoC is developed for GLOBALFOUNDRIES' 22FDX technology and aims to provide a platform for Small and Medium-sized Enterprises (SMEs) that typically do not have access to advanced microelectronics and integration know-how, and are therefore limited to Commercial Off-The-Shelf (COTS) products.

2020-01-28
Hou, Size, Huang, Xin.  2019.  Use of Machine Learning in Detecting Network Security of Edge Computing System. 2019 IEEE 4th International Conference on Big Data Analytics (ICBDA). :252–256.

This study has built a simulation of a smart home system by the Alibaba ECS. The architecture of hardware was based on edge computing technology. The whole method would design a clear classifier to find the boundary between regular and mutation codes. It could be applied in the detection of the mutation code of network. The project has used the dataset vector to divide them into positive and negative type, and the final result has shown the RBF-function SVM method perform best in this mission. This research has got a good network security detection in the IoT systems and increased the applications of machine learning.

2020-01-20
Guha, Krishnendu, Saha, Debasri, Chakrabarti, Amlan.  2019.  Zero Knowledge Authentication for Reuse of IPs in Reconfigurable Platforms. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :2040–2045.
A key challenge of the embedded era is to ensure trust in reuse of intellectual properties (IPs), which facilitates reduction of design cost and meeting of stringent marketing deadlines. Determining source of the IPs or their authenticity is a key metric to facilitate safe reuse of IPs. Though physical unclonable functions solves this problem for application specific integrated circuit (ASIC) IPs, authentication strategies for reconfigurable IPs (RIPs) or IPs of reconfigurable hardware platforms like field programmable gate arrays (FPGAs) are still in their infancy. Existing authentication techniques for RIPs that relies on verification of proof of authentication (PoA) mark embedded in the RIP by the RIP producers, leak useful clues about the PoA mark. This results in replication and implantation of the PoA mark in fake RIPs. This not only causes loss to authorized second hand RIP users, but also poses risk to the reputation of the RIP producers. We propose a zero knowledge authentication strategy for safe reusing of RIPs. The PoA of an RIP producer is kept secret and verification is carried out based on traversal times from the initial point to several intermediate points of the embedded PoA when the RIPs configure an FPGA. Such delays are user specific and cannot be replicated as these depend on intrinsic properties of the base semiconductor material of the FPGA, which is unique and never same as that of another FPGA. Experimental results validate our proposed mechanism. High strength even for low overhead ISCAS benchmarks, considered as PoA for experimentation depict the prospects of our proposed methodology.
He, Zecheng, Raghavan, Aswin, Hu, Guangyuan, Chai, Sek, Lee, Ruby.  2019.  Power-Grid Controller Anomaly Detection with Enhanced Temporal Deep Learning. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :160–167.
Controllers of security-critical cyber-physical systems, like the power grid, are a very important class of computer systems. Attacks against the control code of a power-grid system, especially zero-day attacks, can be catastrophic. Earlier detection of the anomalies can prevent further damage. However, detecting zero-day attacks is extremely challenging because they have no known code and have unknown behavior. Furthermore, if data collected from the controller is transferred to a server through networks for analysis and detection of anomalous behavior, this creates a very large attack surface and also delays detection. In order to address this problem, we propose Reconstruction Error Distribution (RED) of Hardware Performance Counters (HPCs), and a data-driven defense system based on it. Specifically, we first train a temporal deep learning model, using only normal HPC readings from legitimate processes that run daily in these power-grid systems, to model the normal behavior of the power-grid controller. Then, we run this model using real-time data from commonly available HPCs. We use the proposed RED to enhance the temporal deep learning detection of anomalous behavior, by estimating distribution deviations from the normal behavior with an effective statistical test. Experimental results on a real power-grid controller show that we can detect anomalous behavior with high accuracy (\textbackslashtextgreater99.9%), nearly zero false positives and short (\textbackslashtextless; 360ms) latency.
Thiemann, Benjamin, Feiten, Linus, Raiola, Pascal, Becker, Bernd, Sauer, Matthias.  2019.  On Integrating Lightweight Encryption in Reconfigurable Scan Networks. 2019 IEEE European Test Symposium (ETS). :1–6.

Reconfigurable Scan Networks (RSNs) are a powerful tool for testing and maintenance of embedded systems, since they allow for flexible access to on-chip instrumentation such as built-in self-test and debug modules. RSNs, however, can be also exploited by malicious users as a side-channel in order to gain information about sensitive data or intellectual property and to recover secret keys. Hence, implementing appropriate counter-measures to secure the access to and data integrity of embedded instrumentation is of high importance. In this paper we present a novel hardware and software combined approach to ensure data privacy in IEEE Std 1687 (IJTAG) RSNs. To do so, both a secure IJTAG compliant plug-and-play instrument wrapper and a versatile software toolchain are introduced. The wrapper demonstrates the necessary architectural adaptations required when using a lightweight stream cipher, whereas the software toolchain provides a seamless integration of the testing workflow with stream cipher. The applicability of the method is demonstrated by an FPGA-based implementation. We report on the performance of the developed instrument wrapper, which is empirically shown to have only a small impact on the workflow in terms of hardware overhead, operational costs and test time overhead.

Gay, Maël, Paxian, Tobias, Upadhyaya, Devanshi, Becker, Bernd, Polian, Ilia.  2019.  Hardware-Oriented Algebraic Fault Attack Framework with Multiple Fault Injection Support. 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC). :25–32.

The evaluation of fault attacks on security-critical hardware implementations of cryptographic primitives is an important concern. In such regards, we have created a framework for automated construction of fault attacks on hardware realization of ciphers. The framework can be used to quickly evaluate any cipher implementations, including any optimisations. It takes the circuit description of the cipher and the fault model as input. The output of the framework is a set of algebraic equations, such as conjunctive normal form (CNF) clauses, which is then fed to a SAT solver. We consider both attacking an actual implementation of a cipher on an field-programmable gate array (FPGA) platform using a fault injector and the evaluation of an early design of the cipher using idealized fault models. We report the successful application of our hardware-oriented framework to a collection of ciphers, including the advanced encryption standard (AES), and the lightweight block ciphers LED and PRESENT. The corresponding results and a discussion of the impact to different fault models on our framework are shown. Moreover, we report significant improvements compared to similar frameworks, such as speedups or more advanced features. Our framework is the first algebraic fault attack (AFA) tool to evaluate the state-of-the art cipher LED-64, PRESENT and full-scale AES using only hardware-oriented structural cipher descriptions.

Chawla, Nikhil, Singh, Arvind, Rahman, Nael Mizanur, Kar, Monodeep, Mukhopadhyay, Saibal.  2019.  Extracting Side-Channel Leakage from Round Unrolled Implementations of Lightweight Ciphers. 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :31–40.

Energy efficiency and security is a critical requirement for computing at edge nodes. Unrolled architectures for lightweight cryptographic algorithms have been shown to be energy-efficient, providing higher performance while meeting resource constraints. Hardware implementations of unrolled datapaths have also been shown to be resistant to side channel analysis (SCA) attacks due to a reduction in signal-to-noise ratio (SNR) and an increased complexity in the leakage model. This paper demonstrates optimal leakage models and an improved CFA attack which makes it feasible to extract first-order side-channel leakages from combinational logic in the initial rounds of unrolled datapaths. Several leakage models, targeting initial rounds, are explored and 1-bit hamming weight (HW) based leakage model is shown to be an optimal choice. Additionally, multi-band narrow bandpass filtering techniques in conjunction with correlation frequency analysis (CFA) is demonstrated to improve SNR by up to 4×, attributed to the removal of the misalignment effect in combinational logics and signal isolation. The improved CFA attack is performed on side channel signatures acquired for 7-round unrolled SIMON datapaths, implemented on Sakura-G (XILINX spartan 6, 45nm) based FPGA platform and a 24× reduction in minimum-traces-to-disclose (MTD) for revealing 80% of the key bits is demonstrated with respect to conventional time domain correlation power analysis (CPA). Finally, the proposed method is successfully applied to a fully-unrolled datapath for PRINCE and a parallel round-based datapath for Advanced Encryption Standard (AES) algorithm to demonstrate its general applicability.

Bauer, Sergei, Brunner, Martin, Schartner, Peter.  2019.  Lightweight Authentication for Low-End Control Units with Hardware Based Individual Keys. 2019 Third IEEE International Conference on Robotic Computing (IRC). :425–426.

In autonomous driving, security issues from robotic and automotive applications are converging toward each other. A novel approach for deriving secret keys using a lightweight cipher in the firmware of low-end control units is introduced. By evaluating the method on a typical low-end automotive platform, we demonstrate the reusability of the cipher for message authentication. The proposed solution counteracts a known security issue in the robotics and automotive domain.

Pillutla, Siva Ramakrishna, Boppana, Lakshmi.  2019.  A high-throughput fully digit-serial polynomial basis finite field \$\textbackslashtextGF(2ˆm)\$ multiplier for IoT applications. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :920–924.

The performance of many data security and reliability applications depends on computations in finite fields \$\textbackslashtextGF (2ˆm)\$. In finite field arithmetic, field multiplication is a complex operation and is also used in other operations such as inversion and exponentiation. By considering the application domain needs, a variety of efficient algorithms and architectures are proposed in the literature for field \$\textbackslashtextGF (2ˆm)\$ multiplier. With the rapid emergence of Internet of Things (IoT) and Wireless Sensor Networks (WSN), many resource-constrained devices such as IoT edge devices and WSN end nodes came into existence. The data bus width of these constrained devices is typically smaller. Digit-level architectures which can make use of the full data bus are suitable for these devices. In this paper, we propose a new fully digit-serial polynomial basis finite field \$\textbackslashtextGF (2ˆm)\$ multiplier where both the operands enter the architecture concurrently at digit-level. Though there are many digit-level multipliers available for polynomial basis multiplication in the literature, it is for the first time to propose a fully digit-serial polynomial basis multiplier. The proposed multiplication scheme is based on the multiplication scheme presented in the literature for a redundant basis multiplication. The proposed polynomial basis multiplication results in a high-throughput architecture. This multiplier is applicable for a class of trinomials, and this class of irreducible polynomials is highly desirable for IoT edge devices since it allows the least area and time complexities. The proposed multiplier achieves better throughput when compared with previous digit-level architectures.

2020-01-13
Kabiri, Peyman, Chavoshi, Mahdieh.  2019.  Destructive Attacks Detection and Response System for Physical Devices in Cyber-Physical Systems. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–6.

Nowadays, physical health of equipment controlled by Cyber-Physical Systems (CPS) is a significant concern. This paper reports a work, in which, a hardware is placed between Programmable Logic Controller (PLC) and the actuator as a solution. The proposed hardware operates in two conditions, i.e. passive and active. Operation of the proposed solution is based on the repetitive operational profile of the actuators. The normal operational profile of the actuator is fed to the protective hardware and is considered as the normal operating condition. In the normal operating condition, the middleware operates in its passive mode and simply monitors electronic signals passing between PLC and Actuator. In case of any malicious operation, the proposed hardware operates in its active mode and both slowly stops the actuator and sends an alert to SCADA server initiating execution of the actuator's emergency profile. Thus, the proposed hardware gains control over the actuator and prevents any physical damage on the operating devices. Two sample experiments are reported in which, results of implementing the proposed solution are reported and assessed. Results show that once the PLC sends incorrect data to actuator, the proposed hardware detects it as an anomaly. Therefore, it does not allow the PLC to send incorrect and unauthorized data pattern to its actuator. Significance of the paper is in introducing a solution to prevent destruction of physical devices apart from source or purpose of the encountered anomaly and apart from CPS functionality or PLC model and operation.

2019-12-30
Venkatesh, K, Pratibha, K, Annadurai, Suganya, Kuppusamy, Lakshmi.  2019.  Reconfigurable Architecture to Speed-up Modular Exponentiation. 2019 International Carnahan Conference on Security Technology (ICCST). :1-6.

Diffie-Hellman and RSA encryption/decryption involve computationally intensive cryptographic operations such as modular exponentiation. Computing modular exponentiation using appropriate pre-computed pairs of bases and exponents was first proposed by Boyko et al. In this paper, we present a reconfigurable architecture for pre-computation methods to compute modular exponentiation and thereby speeding up RSA and Diffie-Hellman like protocols. We choose Diffie-Hellman key pair (a, ga mod p) to illustrate the efficiency of Boyko et al's scheme in hardware architecture that stores pre-computed values ai and corresponding gai in individual block RAM. We use a Pseudo-random number generator (PRNG) to randomly choose ai values that are added and corresponding gai values are multiplied using modular multiplier to arrive at a new pair (a, ga mod p). Further, we present the advantage of using Montgomery and interleaved methods for batch multiplication to optimise time and area. We show that a 1024-bit modular exponentiation can be performed in less than 73$μ$s at a clock rate of 200MHz on a Xilinx Virtex 7 FPGA.

Bazm, Mohammad-Mahdi, Lacoste, Marc, Südholt, Mario, Menaud, Jean-Marc.  2018.  Secure Distributed Computing on Untrusted Fog Infrastructures Using Trusted Linux Containers. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom). :239–242.
Fog and Edge computing provide a large pool of resources at the edge of the network that may be used for distributed computing. Fog infrastructure heterogeneity also results in complex configuration of distributed applications on computing nodes. Linux containers are a mainstream technique allowing to run packaged applications and micro services. However, running applications on remote hosts owned by third parties is challenging because of untrusted operating systems and hardware maintained by third parties. To meet such challenges, we may leverage trusted execution mechanisms. In this work, we propose a model for distributed computing on Fog infrastructures using Linux containers secured by Intel's Software Guard Extensions (SGX) technology. We implement our model on a Docker and OpenSGX platform. The result is a secure and flexible approach for distributed computing on Fog infrastructures.
2019-12-18
Misono, Masanori, Yoshida, Kaito, Hwang, Juho, Shinagawa, Takahiro.  2018.  Distributed Denial of Service Attack Prevention at Source Machines. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :488-495.

Distributed denial of service (DDoS) attacks is a serious cyberattack that exhausts target machine's processing capacity by sending a huge number of packets from hijacked machines. To minimize resource consumption caused by DDoS attacks, filtering attack packets at source machines is the best approach. Although many studies have explored the detection of DDoS attacks, few studies have proposed DDoS attack prevention schemes that work at source machines. We propose a reliable, lightweight, transparent, and flexible DDoS attack prevention scheme that works at source machines. In this scheme, we employ a hypervisor with a packet filtering mechanism on each managed machine to allow the administrator to easily and reliably suppress packet transmissions. To make the proposed scheme lightweight and transparent, we exploit a thin hypervisor that allows pass-through access to hardware (except for network devices) from the operating system, thereby reducing virtualization overhead and avoiding compromising user experience. To make the proposed scheme flexible, we exploit a configurable packet filtering mechanism with a guaranteed safe code execution mechanism that allows the administrator to provide a filtering policy as executable code. In this study, we implemented the proposed scheme using BitVisor and the Berkeley Packet Filter. Experimental results show that the proposed scheme can suppress arbitrary packet transmissions with negligible latency and throughput overhead compared to a bare metal system without filtering mechanisms.

2019-12-17
Huang, Bo-Yuan, Ray, Sayak, Gupta, Aarti, Fung, Jason M., Malik, Sharad.  2018.  Formal Security Verification of Concurrent Firmware in SoCs Using Instruction-Level Abstraction for Hardware*. 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). :1-6.

Formal security verification of firmware interacting with hardware in modern Systems-on-Chip (SoCs) is a critical research problem. This faces the following challenges: (1) design complexity and heterogeneity, (2) semantics gaps between software and hardware, (3) concurrency between firmware/hardware and between Intellectual Property Blocks (IPs), and (4) expensive bit-precise reasoning. In this paper, we present a co-verification methodology to address these challenges. We model hardware using the Instruction-Level Abstraction (ILA), capturing firmware-visible behavior at the architecture level. This enables integrating hardware behavior with firmware in each IP into a single thread. The co-verification with multiple firmware across IPs is formulated as a multi-threaded program verification problem, for which we leverage software verification techniques. We also propose an optimization using abstraction to prevent expensive bit-precise reasoning. The evaluation of our methodology on an industry SoC Secure Boot design demonstrates its applicability in SoC security verification.

2019-12-09
Nozaki, Yusuke, Yoshikawa, Masaya.  2018.  Area Constraint Aware Physical Unclonable Function for Intelligence Module. 2018 3rd International Conference on Computational Intelligence and Applications (ICCIA). :205-209.

Artificial intelligence technology such as neural network (NN) is widely used in intelligence module for Internet of Things (IoT). On the other hand, the risk of illegal attacks for IoT devices is pointed out; therefore, security countermeasures such as an authentication are very important. In the field of hardware security, the physical unclonable functions (PUFs) have been attracted attention as authentication techniques to prevent the semiconductor counterfeits. However, implementation of the dedicated hardware for both of NN and PUF increases circuit area. Therefore, this study proposes a new area constraint aware PUF for intelligence module. The proposed PUF utilizes the propagation delay time from input layer to output layer of NN. To share component for operation, the proposed PUF reduces the circuit area. Experiments using a field programmable gate array evaluate circuit area and PUF performance. In the result of circuit area, the proposed PUF was smaller than the conventional PUFs was showed. Then, in the PUF performance evaluation, for steadiness, diffuseness, and uniqueness, favorable results were obtained.