Patel, Jatin, Halabi, Talal.
2021.
Optimizing the Performance of Web Applications in Mobile Cloud Computing. 2021 IEEE 6th International Conference on Smart Cloud (SmartCloud). :33—37.
Cloud computing adoption is on the rise. Many organizations have decided to shift their workload to the cloud to benefit from the scalability, resilience, and cost reduction characteristics. Mobile Cloud Computing (MCC) is an emerging computing paradigm that also provides many advantages to mobile users. Mobile devices function on wireless internet connectivity, which entails issues of limited bandwidth and network congestion. Hence, the primary focus of Web applications in MCC is on improving performance by quickly fulfilling customer's requests to improve service satisfaction. This paper investigates a new approach to caching data in these applications using Redis, an in-memory data store, to enhance Quality of Service. We highlight the two implementation approaches of fetching the data of an application either directly from the database or from the cache. Our experimental analysis shows that, based on performance metrics such as response time, throughput, latency, and number of hits, the caching approach achieves better performance by speeding up the data retrieval by up to four times. This improvement is of significant importance in mobile devices considering their limitation of network bandwidth and wireless connectivity.
Ashihara, Takakazu, Kamiyama, Noriaki.
2021.
Detecting Cache Pollution Attacks Using Bloom Filter. 2021 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN). :1—6.
To provide web browsing and video streaming services with desirable quality, cache servers have been widely used to deliver digital data to users from locations close to users. For example, in the MEC (mobile edge computing), cache memories are provided at base stations of 5G cellular networks to reduce the traffic load in the backhaul networks. Cache servers are also connected to many edge routers in the CDN (content delivery network), and they are provided at routers in the ICN (information-centric networking). However, the cache pollution attack (CPA) which degrades the cache hit ratio by intentionally sending many requests to non-popular contents will be a serious threat in the cache networks. Quickly detecting the CPA hosts and protecting the cache servers is important to effectively utilize the cache resources. Therefore, in this paper, we propose a method of accurately detecting the CPA hosts using a limited amount of memory resources. The proposed method is based on a Bloom filter using the combination of identifiers of host and content as keys. We also propose to use two Bloom filters in parallel to continuously detect CPA hosts. Through numerical evaluations, we show that the proposed method suppresses the degradation of the cache hit ratio caused by the CPA while avoiding the false identification of legitimate hosts.
Pasias, Achilleas, Kotsiopoulos, Thanasis, Lazaridis, Georgios, Drosou, Anastasios, Tzovaras, Dimitrios, Sarigiannidis, Panagiotis.
2021.
Enabling Cyber-attack Mitigation Techniques in a Software Defined Network. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :497–502.
Software Defined Networking (SDN) is an innovative technology, which can be applied in a plethora of applications and areas. Recently, SDN has been identified as one of the most promising solutions for industrial applications as well. The key features of SDN include the decoupling of the control plane from the data plane and the programmability of the network through application development. Researchers are looking at these features in order to enhance the Quality of Service (QoS) provisioning of modern network applications. To this end, the following work presents the development of an SDN application, capable of mitigating attacks and maximizing the network’s QoS, by implementing mixed integer linear programming but also using genetic algorithms. Furthermore, a low-cost, physical SDN testbed was developed in order to evaluate the aforementioned application in a more realistic environment other than only using simulation tools.
Janak, Jan, Retty, Hema, Chee, Dana, Baloian, Artiom, Schulzrinne, Henning.
2021.
Talking After Lights Out: An Ad Hoc Network for Electric Grid Recovery. 2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :181–187.
When the electrical grid in a region suffers a major outage, e.g., after a catastrophic cyber attack, a “black start” may be required, where the grid is slowly restarted, carefully and incrementally adding generating capacity and demand. To ensure safe and effective black start, the grid control center has to be able to communicate with field personnel and with supervisory control and data acquisition (SCADA) systems. Voice and text communication are particularly critical. As part of the Defense Advanced Research Projects Agency (DARPA) Rapid Attack Detection, Isolation, and Characterization Systems (RADICS) program, we designed, tested and evaluated a self-configuring mesh network prototype called the Phoenix Secure Emergency Network (PhoenixSEN). PhoenixSEN provides a secure drop-in replacement for grid's primary communication networks during black start recovery. The network combines existing and new technologies, can work with a variety of link-layer protocols, emphasizes manageability and auto-configuration, and provides services and applications for coordination of people and devices including voice, text, and SCADA communication. We discuss the architecture of PhoenixSEN and evaluate a prototype on realistic grid infrastructure through a series of DARPA-led exercises.
Jadhav, Krishna D, Balaji, Sripathy.
2021.
Analysis of Wireless Mesh Security to Minimize Privacy and Security Breach. 2021 IEEE 12th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0797–0804.
Due to its minimal price and expandable wireless open system interconnection options for the coming years, wireless mesh networking is appealing, developing, and novel medium of speech, which is why it is becoming a somewhat widely used communication field. In all network types, one of the essential factors for prevalent and trustworthy communication is cybersecurity. The IEEE 802.11 working gathering has created various correspondence guidelines. Yet, they are by and by focusing on the 802.11s standard because of its dynamic setup and geography learning abilities. Information, voice, and directions are steered between hubs employing remote lattice organising. WMNs incidentally give nearby 802.11g admittance to customers and connection neighbours utilising 802.11a "backhaul," but this isn’t generally the situation because of changing requirements, for example, top information rate and inclusion range. The small cross-sectional organisation emerged as a fundamental innovation to enable broadband system management in large regions. It benefits specialised organisations by reducing the cost of sending networks and end customers by providing ubiquitous Internet access anywhere, anytime. Given the idea of wireless mesh networking and the lack of integrated organisational technology, small grid networks are powerless against malicious attacks. In the meantime, the limit of multi-radio multi-channel correspondence, the need for heterogeneous organisation coordination, and the interest for multi-bounce remote equality often render conventional security strategies ineffectual or challenging to carry out. Thus, wireless mesh networking presents new issues that require more viable and relevant arrangements. WMNs have piqued the curiosity of both scholastics and industry because of their promising future. Numerous testbeds are built for research purposes, and business items for veritable WMNs are accessible. Anyway, a few concerns should be cleared up before they can very well become widespread. For example, the accessible MAC and routing conventions are not customisable; the throughput drops impressively with an increasing number of hubs or bounces in WMNs. Because of the weakness of WMNs against various malicious attacks, the security and protection of correspondence is a serious concern. For example, enemies can sniff long-distance correspondence to obtain sensitive data. Attackers can carry out DoS attacks and control the substance of the information sent through compromised hubs, thereby endangering the company’s secret, accessibility authenticity, and integrity. WMNs, like compact Impromptu Organisations (MANETs), share a typical medium, no traffic aggregate point, and incredible topography. Due to these restrictions, normal safety frameworks in wired associations can’t be quickly applied to WMNs. Also, the techniques utilised in MANETs are not viable with WMNs. This is because of the manner in which WMNs expand MANETs in different ways. Framework centres are generally outfitted with an assortment of radios. Then, at that point, many channels are doled out to every centre to work with concurrent data move and diversity.
Grabatin, Michael, Hommel, Wolfgang.
2021.
Self-sovereign Identity Management in Wireless Ad Hoc Mesh Networks. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :480–486.
Verifying the identity of nodes within a wireless ad hoc mesh network and the authenticity of their messages in sufficiently secure, yet power-efficient ways is a long-standing challenge. This paper shows how the more recent concepts of self-sovereign identity management can be applied to Internet-of-Things mesh networks, using LoRaWAN as an example and applying Sovrin's decentralized identifiers and verifiable credentials in combination with Schnorr signatures for securing the communication with a focus on simplex and broadcast connections. Besides the concept and system architecture, the paper discusses an ESP32-based implementation using SX1276/SX1278 LoRa chips, adaptations made to the lmic- and MbedTLS-based software stack, and practically evaluates performance aspects in terms of data overhead, time-on-air impact, and power consumption.