Biblio
Robots are networks of a variety of computing devices, such as powerful computing platforms but also tiny microcontrollers. The Robot Operating System (ROS) is the dominant framework for powerful computing devices. While ROS version 2 adds important features like quality of service and security, it cannot be directly applied to microcontrollers because of its large memory footprint. The micro-ROS project has ported the ROS 2 API to microcontrollers. However, the standard ROS 2 concepts are not enough for real-time performance: In the ROS 2 release “Foxy”, the standard ROS 2 Executor, which is the central component responsible for handling timers and incoming message data, is neither real-time capable nor deterministic. Domain-specific requirements of mobile robots, like sense-plan-act control loops, cannot be addressed with the standard ROS 2 Executor. In this paper, we present an advanced Executor for the ROS 2 C API which provides deterministic scheduling and supports domain-specific requirements. A proof-of-concept is demonstrated on a 32-bit microcontroller.
The popularity and demand of home automation has increased exponentially in recent years because of the ease it provides. Recently, development has been done in this domain and few systems have been proposed that either use voice assistants or application for controlling the electrical appliances. However; less emphasis is laid on power efficiency and this system cannot be integrated with the existing appliances and hence, the entire system needs to be upgraded adding to a lot of additional cost in purchasing new appliances. In this research, the objective is to design such a system that emphasises on power efficiency as well as can be integrated with the already existing appliances. NodeMCU, along with Raspberry Pi, Firebase realtime database, is used to create a system that accomplishes such endeavours and can control relays, which can control these appliances without the need of replacing them. The experiments in this paper demonstrate triggering of electrical appliances using voice assistant, fire alarm on the basis of flame sensor and temperature sensor. Moreover; use of android application was presented for operating electrical appliances from a remote location. Lastly, the system can be modified by adding security cameras, smart blinds, robot vacuums etc.
Mobile and IoT operating systems–and their ensuing software updates–are usually distributed as binary files. Given that these binary files are commonly closed source, users or businesses who want to assess the security of the software need to rely on reverse engineering. Further, verifying the correct application of the latest software patches in a given binary is an open problem. The regular application of software patches is a central pillar for improving mobile and IoT device security. This requires developers, integrators, and vendors to propagate patches to all affected devices in a timely and coordinated fashion. In practice, vendors follow different and sometimes improper security update agendas for both mobile and IoT products. Moreover, previous studies revealed the existence of a hidden patch gap: several vendors falsely reported that they patched vulnerabilities. Therefore, techniques to verify whether vulnerabilities have been patched or not in a given binary are essential. Deep learning approaches have shown to be promising for static binary analyses with respect to inferring binary similarity as well as vulnerability detection. However, these approaches fail to capture the dynamic behavior of these systems, and, as a result, they may inundate the analysis with false positives when performing vulnerability discovery in the wild. In particular, they cannot capture the fine-grained characteristics necessary to distinguish whether a vulnerability has been patched or not. In this paper, we present PATCHECKO, a vulnerability and patch presence detection framework for executable binaries. PATCHECKO relies on a hybrid, cross-platform binary code similarity analysis that combines deep learning-based static binary analysis with dynamic binary analysis. PATCHECKO does not require access to the source code of the target binary nor that of vulnerable functions. We evaluate PATCHECKO on the most recent Google Pixel 2 smartphone and the Android Things IoT firmware images, within which 25 known CVE vulnerabilities have been previously reported and patched. Our deep learning model shows a vulnerability detection accuracy of over 93%. We further prune the candidates found by the deep learning stage–which includes false positives–via dynamic binary analysis. Consequently, PATCHECKO successfully identifies the correct matches among the candidate functions in the top 3 ranked outcomes 100% of the time. Furthermore, PATCHECKO's differential engine distinguishes between functions that are still vulnerable and those that are patched with an accuracy of 96%.
Complex CPS such as UAS got rapid development these years, but also became vulnerable to GPS spoofing, packets injection, buffer-overflow and other malicious attacks. Ensuring the behaviors of UAS always keeping secure no matter how the environment changes, would be a prospective direction for UAS security. This paper aims at presenting a reactive synthesis-based approach to implement the automatic generation of secure UAS controller. First, we study the operating mechanism of UAS and construct a high-Ievel model consisting of actuator and monitor. Besides, we analyze the security threats of UAS from the perspective of hardware, software and data transmission, and then extract the corresponding specifications of security properties with LTL formulas. Based on the UAS model and security specifications, the controller can be constructed by GR(1) synthesis algorithm, which is a two-player game process between UAV and Environment. Finally, we expand the function of LTLMoP platform to construct the automatons for controller in multi-robots system, which provides secure behavior strategies under several typical UAS attack scenarios.
RISC-V is free and open standard instruction set architecture following reduced instruction set computer principle. Because of its openness and scalability, RISC-V has been adapted not only for embedded CPUs such as mobile and IoT market, but also for heavy-workload CPUs such as the data center or super computing field. On top of it, Robotics is also a good application of RISC-V because security and reliability become crucial issues of robotics system. These problems could be solved by enthusiastic open source community members as they have shown on open source operating system. However, running RISC-V on local FPGA becomes harder than before because now RISC-V foundation are focusing on cloud-based FPGA environment. We have experienced that recently released OS and toolchains for RISC-V are not working well on the previous CPU image for local FPGA. In this paper we design the local FPGA platform for RISC-V processor and run the robotics application on mainstream Robot Operating System on top of the RISC-V processor. This platform allow us to explore the architecture space of RISC-V CPU for robotics application, and get the insight of the RISC-V CPU architecture for optimal performance and the secure system.
By analogy to nature, sight is the main integral component of robotic complexes, including unmanned vehicles. In this connection, one of the urgent tasks in the modern development of unmanned vehicles is the solution to the problem of providing security for new advanced systems, algorithms, methods, and principles of space navigation of robots. In the paper, we present an approach to the protection of machine vision systems based on technologies of deep learning. At the heart of the approach lies the “Feature Squeezing” method that works on the phase of model operation. It allows us to detect “adversarial” examples. Considering the urgency and importance of the target process, the features of unmanned vehicle hardware platforms and also the necessity of execution of tasks on detecting of the objects in real-time mode, it was offered to carry out an additional simple computational procedure of localization and classification of required objects in case of crossing a defined in advance threshold of “adversarial” object testing.
The paper presents a comprehensive model of cybersecurity threats for a system of autonomous and remotely controlled vehicles (AV) in the environment of a smart city. The main focus in the security context is given to the “integrity” property. That property is of higher importance for industrial control systems in comparison with other security properties (availability and confidentiality). The security graph, which is part of the model, is dynamic, and, in real cases, its analysis may require significant computing resources for AV systems with a large number of assets and connections. The simplified example of the security graph for the AV system is presented.
In light of the problem for garbage cleaning in small water area, an intelligent miniature water surface garbage cleaning robot with unmanned driving and convenient operation is designed. Based on STC12C5A60S2 as the main controller in the design, power module, transmission module and cleaning module are controlled together to realize the function of cleaning and transporting garbage, intelligent remote control of miniature water surface garbage cleaning robot is realized by the WiFi module. Then the prototype is developed and tested, which will verify the rationality of the design. Compared with the traditional manual driving water surface cleaning devices, the designed robot realizes the intelligent control of unmanned driving, and achieves the purpose of saving human resources and reducing labor intensity, and the system operates security and stability, which has certain practical value.
Robot Operating System (ROS) is becoming more and more important and is used widely by developers and researchers in various domains. One of the most important fields where it is being used is the self-driving cars industry. However, this framework is far from being totally secure, and the existing security breaches do not have robust solutions. In this paper we focus on the camera vulnerabilities, as it is often the most important source for the environment discovery and the decision-making process. We propose an unsupervised anomaly detection tool for detecting suspicious frames incoming from camera flows. Our solution is based on spatio-temporal autoencoders used to truthfully reconstruct the camera frames and detect abnormal ones by measuring the difference with the input. We test our approach on a real-word dataset, i.e. flows coming from embedded cameras of self-driving cars. Our solution outperforms the existing works on different scenarios.
In Robotics Operating System Process correspondence is the instrument given by the working framework that enables procedures to speak with one another Message passing model enables different procedures to peruse and compose information to the message line without being associated with one another, messages going between Robots. ROS is intended to be an inexactly coupled framework where a procedure is known as a hub and each hub ought to be answerable for one assignment. In the military application robots will go to go about as an officer and going ensure nation. In the referenced idea robot solider will give the message passing idea then the officers will go caution and start assaulting on the foes.
Industrial robots are playing an important role in now a day industrial productions. However, due to the increasing in robot hardware modules and the rapid expansion of software modules, the reliability of operating systems for industrial robots is facing severe challenges, especially for the light-weight edge computing platforms. Based on current technologies on resource security isolation protection and access control, a novel resource management model for real-time edge system of multiple robot arms is proposed on light-weight edge devices. This novel resource management model can achieve the following functions: mission-critical resource classification, resource security access control, and multi-level security data isolation transmission. We also propose a fault location and isolation model on each lightweight edge device, which ensures the reliability of the entire system. Experimental results show that the robot operating system can meet the requirements of hierarchical management and resource access control. Compared with the existing methods, the fault location and isolation model can effectively locate and deal with the faults generated by the system.
With the wide application of modern robots, more concerns have been raised on security and privacy of robotic systems and applications. Although the Robot Operating System (ROS) is commonly used on different robots, there have been few work considering the security aspects of ROS. As ROS does not employ even the basic permission control mechanism, applications can access any resources without limitation, which could result in equipment damage, harm to human, as well as privacy leakage. In this paper we propose an access control mechanism for ROS based on an extended policy-based access control (PBAC) model. Specifically, we extend ROS to add an additional node dedicated for access control so that it can provide user identity and permission management services. The proposed mechanism also allows the administrator to revoke a permission dynamically. We implemented the proposed method in ROS and demonstrated its applicability and performance through several case studies.