Biblio
Filters: Keyword is network on chip security [Clear All Filters]
Packet Header Attack by Hardware Trojan in NoC Based TCMP and Its Impact Analysis. 2021 15th IEEE/ACM International Symposium on Networks-on-Chip (NOCS). :21–28.
.
2021. With the advancement of VLSI technology, Tiled Chip Multicore Processors (TCMP) with packet switched Network-on-Chip (NoC) have been emerged as the backbone of the modern data intensive parallel systems. Due to tight time-to-market constraints, manufacturers are exploring the possibility of integrating several third-party Intellectual Property (IP) cores in their TCMP designs. Presence of malicious Hardware Trojan (HT) in the NoC routers can adversely affect communication between tiles leading to degradation of overall system performance. In this paper, we model an HT mounted on the input buffers of NoC routers that can alter the destination address field of selected NoC packets. We study the impact of such HTs and analyse its first and second order impacts at the core level, cache level, and NoC level both quantitatively and qualitatively. Our experimental study shows that the proposed HT can bring application to a complete halt by stalling instruction issue and can significantly impact the miss penalty of L1 caches. The impact of re-transmission techniques in the context of HT impacted packets getting discarded is also studied. We also expose the unrealistic assumptions and unacceptable latency overheads of existing mitigation techniques for packet header attacks and emphasise the need for alternative cost effective HT management techniques for the same.
A Framework For Network Intrusion Detection Based on Unsupervised Learning. 2021 IEEE International Conference on Artificial Intelligence and Industrial Design (AIID). :188–193.
.
2021. Anomaly detection is the primary method of detecting intrusion. Unsupervised models, such as auto-encoders network, auto-encoder, and GMM, are currently the most widely used anomaly detection techniques. In reality, the samples used to train the unsupervised model may not be pure enough and may include some abnormal samples. However, the classification effect is poor since these approaches do not completely understand the association between reconstruction errors, reconstruction characteristics, and irregular sample density distribution. This paper proposes a novel intrusion detection system architecture that includes data collection, processing, and feature extraction by integrating data reconstruction features, reconstruction errors, auto-encoder parameters, and GMM. Our system outperforms other unsupervised learning-based detection approaches in terms of accuracy, recall, F1-score, and other assessment metrics after training and testing on multiple intrusion detection data sets.
Lightweight Monitoring Scheme for Flooding DoS Attack Detection in Multi-Tenant MPSoCs. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
.
2021. The increasing use of Multiprocessor Systems-on-Chip (MPSoCs) within scalable multi-tenant systems, such as fog/cloud computing, faces the challenge of potential attacks originated by the execution of malicious tasks. Flooding Denial- of-Service (FDoS) attacks are one of the most common and powerful threats for Network-on-Chip (NoC)-based MPSoCs. Since, by overwhelming the NoC, the system is unable to forward legitimate traffic. However, the effectiveness of FDoS attacks depend on the NoC configuration. Moreover, designing a secure MPSoC capable of detecting such attacks while avoiding excessive power/energy and area costs is challenging. To this end, we present two contributions. First, we demonstrate two types of FDoS attacks: based on the packet injection rate (PIR-based FDoS) and based on the packet's payload length (PPL-based FDoS). We show that fair round-robin NoCs are intrinsically protected against PIR-based FDoS. Instead, PPL-based FDoS attacks represent a real threat to MPSoCs. Second, we propose a novel lightweight monitoring method for detecting communication disruptions. Simulation and synthesis results show the feasibility and efficiency of the presented approach.
Efficient Acceleration of Decision Tree Algorithms for Encrypted Network Traffic Analysis. 2021 24th International Symposium on Design and Diagnostics of Electronic Circuits Systems (DDECS). :115–118.
.
2021. Network traffic analysis and deep packet inspection are time-consuming tasks, which current processors can not handle at 100 Gbps speed. Therefore security systems need fast packet processing with hardware acceleration. With the growing of encrypted network traffic, it is necessary to extend Intrusion Detection Systems (IDSes) and other security tools by new detection methods. Security tools started to use classifiers trained by machine learning techniques based on decision trees. Random Forest, Compact Random Forest and AdaBoost provide excellent result in network traffic analysis. Unfortunately, hardware architectures for these machine learning techniques need high utilisation of on-chip memory and logic resources. Therefore we propose several optimisations of highly pipelined architecture for acceleration of machine learning techniques based on decision trees. The optimisations use the various encoding of a feature vector to reduce hardware resources. Due to the proposed optimisations, it was possible to reduce LUTs by 70.5 % for HTTP brute force attack detection and BRAMs by 50 % for application protocol identification. Both with only negligible impact on classifiers' accuracy. Moreover, proposed optimisations reduce wires and multiplexors in the processing pipeline, positively affecting the proposed architecture's maximal achievable frequency.
Exploiting Process Variations to Protect Machine Learning Inference Engine from Chip Cloning. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
.
2021. Machine learning inference engine is of great interest to smart edge computing. Compute-in-memory (CIM) architecture has shown significant improvements in throughput and energy efficiency for hardware acceleration. Emerging nonvolatile memory (eNVM) technologies offer great potentials for instant on and off by dynamic power gating. Inference engine is typically pre-trained by the cloud and then being deployed to the field. There is a new security concern on cloning of the weights stored on eNVM-based CIM chip. In this paper, we propose a countermeasure to the weight cloning attack by exploiting the process variations of the periphery circuitry. In particular, we use weight fine-tuning to compensate the analog-to-digital converter (ADC) offset for a specific chip instance while inducing significant accuracy drop for cloned chip instances. We evaluate our proposed scheme on a CIFAR-10 classification task using a VGG- 8 network. Our results show that with precisely chosen transistor size on the employed SAR-ADC, we could maintain 88% 90% accuracy for the fine-tuned chip while the same set of weights cloned on other chips will only have 20 40% accuracy on average. The weight fine-tune could be completed within one epoch of 250 iterations. On average only 0.02%, 0.025%, 0.142% of cells are updated for 2-bit, 4-bit, 8-bit weight precisions in each iteration.
Trustworthy Computing on Untrustworthy and Trojan-Infected on-Chip Interconnects. 2021 IEEE European Test Symposium (ETS). :1–2.
.
2021. This paper introduces a scheme for achieving trustworthy computing on SoCs that use an outsourced AXI interconnect for on-chip communication. This is achieved through component guarding, data tagging, event verification, and consequently responding dynamically to an attack. Experimental results confirm the ability of the proposed scheme to detect HT attacks and respond to them at run-time. The proposed scheme extends the state-of-art in trustworthy computing on untrustworthy components by focusing on the issue of an untrusted on-chip interconnect for the first time, and by developing a scheme that is independent of untrusted third-party IP.
Lightweight Encryption Using Chaffing and Winnowing with All-or-Nothing Transform for Network-on-Chip Architectures. 2021 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :170–180.
.
2021. Network-on-Chip (NoC) fulfills the communication requirements of modern System-on-Chip (SoC) architectures. Due to the resource-constrained nature of NoC-based SoCs, it is a major challenge to secure on-chip communication against eavesdropping attacks using traditional encryption methods. In this paper, we propose a lightweight encryption technique using chaffing and winnowing (C&W) with all-or-nothing transform (AONT) that benefits from the unique NoC traffic characteristics. Our experimental results demonstrate that our proposed encryption technique provides the required security with significantly less area and energy overhead compared to the state-of-the-art approaches.
Securing Network-on-Chips via Novel Anonymous Routing. 2021 15th IEEE/ACM International Symposium on Networks-on-Chip (NOCS). :29–34.
.
2021. Network-on-Chip (NoC) is widely used as an efficient communication architecture in multi-core and many-core System-on-Chips (SoCs). However, the shared communication resources in NoCs, e.g., channels, buffers, and routers might be used to conduct attacks compromising the security of NoC-based SoCs. Almost all of the proposed encryption-based protection methods in the literature need to leave some parts of the packet unencrypted to allow the routers to process/forward packets accordingly. This uncovers the source/destination information of the packet to malicious routers, which can be used in various attacks. In this paper, we propose the idea of secure anonymous routing with minimal hardware overhead to hide the source/destination information while exchanging secure information over the network. The proposed method uses a novel source-routing algorithm that works with encrypted destination addresses and prevents malicious routers from discovering the source/destination of secure packets. To support our proposal, we have designed and implemented a new NoC architecture that works with encrypted addresses. The conducted hardware evaluations show that the proposed security solution combats the security threats at an affordable cost of 1% area and 10% power overheads chip-wide.
Security Capsules: An Architecture for Post-Silicon Security Assertion Validation for Systems-on-Chip. 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :248–253.
.
2021. In this paper, we propose a methodology for post-silicon validation through the evaluation of security assertions for systems-on-chip (SoC). The methodology is centered around a security architecture in which a "security capsule" is attached to each IP core in the SoC. The security capsule consists of a set of on-line and off-line assertion monitors, a dynamic trace-buffer to trace selected groups of signals, and a dynamic trace controller. The architecture is supported by a trace signal selection and grouping algorithm and a dynamic signal tracing method to evaluate the off-chip monitors. This paper presents the security capsule architecture, the signal selection and grouping algorithm, and the run-time signal tracing method. Results of using the methodology on two SoC architectures based on the OpenRISC-1200 and RISC-V processors are presented.
A Study on the Effect of Hardware Trojans in the Performance of Network on Chip Architectures. 2021 8th International Conference on Smart Computing and Communications (ICSCC). :314—318.
.
2021. Network on chip (NoC) is the communication infrastructure used in multicores which has been subject to a surfeit of security threats like degrading the system performance, changing the system functionality or leaking sensitive information. Because of the globalization of the advanced semiconductor industry, many third-party venders take part in the hardware design of system. As a result, a malicious circuit, called Hardware Trojans (HT) can be added anywhere into the NoC design and thus making the hardware untrusted. In this paper, a detailed study on the taxonomy of hardware trojans, its detection and prevention mechanisms are presented. Two case studies on HT-assisted Denial of service attacks and its analysis in the performance of network on Chip architecture is also presented in this paper.
Research on Impact Assessment of Attacks on Power Terminals. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). :1401–1404.
.
2021. The power terminal network has the characteristics of a large number of nodes, various types, and complex network topology. After the power terminal network is attacked, the impact of power terminals in different business scenarios is also different. Traditional impact assessment methods based on network traffic or power system operation rules are difficult to achieve comprehensive attack impact analysis. In this paper, from the three levels of terminal security itself, terminal network security and terminal business application security, it constructs quantitative indicators for analyzing the impact of power terminals after being attacked, so as to determine the depth and breadth of the impact of the attack on the power terminal network, and provide the next defense measures with realistic basis.
Invariance Checking Based Trojan Detection Method for Three-Dimensional Integrated Circuits. 2020 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
.
2020. Recently literature indicates that stack based three-dimensional (3D) integration techniques may bring in new security vulnerabilities, such as new attack surfaces for hardware Trojan (HT) insertion. Compared to its two-dimensional counterpart (2DHTs), a 3D hardware Trojan (3DHT) could be stealthily distributed in multiple tiers in a single 3D chip. Although the comprehensive models for 3DHTs are available in recent work, there still lacks 3DHT detection and mitigation methods, especially run-time countermeasures against 3DHTs. This work proposes to leverage the 3D communication infrastructure, 3D network-on-chips (NoCs), to tackle the cross-tier hardware Trojans in stacked multi-tier chips. An invariance checking method is further proposed to detect the Trojans that induce malicious NoC packets or facilitate information leak. The proposed method is successfully deployed in NoC routers and achieves a Trojan detection rate of over 94%. The synthesis result of a hardened router at a 45nm technology node shows that the proposed invariance checking only increases the area by 6.49% and consumes 3.76% more dynamic power than an existing 3D router. The NoC protected with the proposed method is applied to the image authentication in a 3D system. The case study indicates that the proposed security measure reduces the correlation coefficient by up to 31% over the baseline.
Mitigation of Tampering Attacks for MR-Based Thermal Sensing in Optical NoCs. 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :554–559.
.
2020. As an emerging role in on-chip communication, the optical networks-on-chip (ONoCs) can provide ultra-high bandwidth, low latency and low power dissipation for the data transfer. However, the thermo-optic effects of the photonic devices have a great impact on the operating performance and reliability of ONoCs, where the thermal-aware control is used to alleviate it. Furthermore, the temperature-sensitive ONoCs are prone to be attacked by the hardware Trojans (HTs) covertly embedded in the integrated circuits (ICs) from the malicious third-party components, leading to performance degradation, denial of service (DoS), or even permanent damages. In this paper, we focus on the tampering attacks on optical sampling during the thermal sensing process in ONoCs. Corresponding approaches are proposed to mitigate the negative impacts from HT attacks. Evaluation results indicate that our approach can significantly enhance the hardware security of thermal sensing for ONoC with trivial overheads of up to 3.06% and 2.6% in average latency and energy consumption, respectively.
Open-Source NoC-Based Many-Core for Evaluating Hardware Trojan Detection Methods. 2020 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
.
2020. In many-cores based on Network-on-Chip (NoC), several applications execute simultaneously, sharing computation, communication and memory resources. This resource sharing leads to security and trust problems. Hardware Trojans (HTs) may steal sensitive information, degrade system performance, and in extreme cases, induce physical damages. Methods available in the literature to prevent attacks include firewalls, denial-of-service detection, dedicated routing algorithms, cryptography, task migration, and secure zones. The goal of this paper is to add an HT in an NoC, able to execute three types of attacks: packet duplication, block applications, and misrouting. The paper qualitatively evaluates the attacks' effect against methods available in the literature, and its effects showed in an NoC-based many-core. The resulting system is an open-source NoC-based many-core for researchers to evaluate new methods against HT attacks.
Defense Against on-Chip Trojans Enabling Traffic Analysis Attacks. 2020 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1–6.
.
2020. Interconnection networks for multi/many-core processors or server systems are the backbone of the system as they enable data communication among the processing cores, caches, memory and other peripherals. Given the criticality of the interconnects, the system can be severely subverted if the interconnection is compromised. The threat of Hardware Trojans (HTs) penetrating complex hardware systems such as multi/many-core processors are increasing due to the increasing presence of third party players in a System-on-chip (SoC) design. Even by deploying naïve HTs, an adversary can exploit the Network-on-Chip (NoC) backbone of the processor and get access to communication patterns in the system. This information, if leaked to an attacker, can reveal important insights regarding the application suites running on the system; thereby compromising the user privacy and paving the way for more severe attacks on the entire system. In this paper, we demonstrate that one or more HTs embedded in the NoC of a multi/many-core processor is capable of leaking sensitive information regarding traffic patterns to an external malicious attacker; who, in turn, can analyze the HT payload data with machine learning techniques to infer the applications running on the processor. Furthermore, to protect against such attacks, we propose a Simulated Annealing-based randomized routing algorithm in the system. The proposed defense is capable of obfuscating the attacker's data processing capabilities to infer the user profiles successfully. Our experimental results demonstrate that the proposed randomized routing algorithm could reduce the accuracy of identifying user profiles by the attacker from \textbackslashtextgreater98% to \textbackslashtextless; 15% in multi/many-core systems.
On-line Detection and Localization of DoS Attacks in NoC. 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 9:173–178.
.
2020. Nowadays, the Network on Chip (NoC) is widely adopted by multi-core System on Chip (SoC) to meet its communication needs. With the gradual popularization of the Internet of Things (IoT), the application of NoC is increasing. Due to its distribution characteristics on the chip, NoC has gradually become the focus of potential security attacks. Denial of service (DoS) is a typical attack and it is caused by malicious intellectual property (IP) core with unnecessary data packets causing communication congestion and performance degradation. In this article, we propose a novel approach to detect DoS attacks on-line based on random forest algorithm, and detect the router where the attack enters the sensitive communication path. This method targets malicious third-party vendors to implant a DoS Hardware Trojan into the NoC. The data set is generated based on the behavior of multi-core routers triggered by normal and Hardware Trojans. The detection accuracy of the proposed scheme is in the range of 93% to 94%.
Lightweight Anonymous Routing in NoC based SoCs. 2020 Design, Automation Test in Europe Conference Exhibition (DATE). :334–337.
.
2020. System-on-Chip (SoC) supply chain is widely acknowledged as a major source of security vulnerabilities. Potentially malicious third-party IPs integrated on the same Network-on-Chip (NoC) with the trusted components can lead to security and trust concerns. While secure communication is a well studied problem in computer networks domain, it is not feasible to implement those solutions on resource-constrained SoCs. In this paper, we present a lightweight anonymous routing protocol for communication between IP cores in NoC based SoCs. Our method eliminates the major overhead associated with traditional anonymous routing protocols while ensuring that the desired security goals are met. Experimental results demonstrate that existing security solutions on NoC can introduce significant (1.5X) performance degradation, whereas our approach provides the same security features with minor (4%) impact on performance.
Security Threats in Channel Access Mechanism of Wireless NoC and Efficient Countermeasures. 2020 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
.
2020. Wireless Network-on-Chip (WNoC) broadly adopts single channel for low overhead data transmission. Sharing of the channel among multiple wireless interfaces (WIs) is controlled by a channel access mechanism (CAM). Such CAM can be malfunctioned by a Hardware Trojan (HT) in a malicious WI or a rogue third party intellectual property (IP) core present on the same System-on-Chip (SoC). This may result in denial-of-service (DoS) or spoofing in WNoC leading to starvation of healthy WIs and under-utilization of wireless channel. Our work demonstrates possible threat model on CAM and proposes low overhead decentralized countermeasures for both DoS and spoofing attacks in WNoC.
A Secure Network Interface for on-Chip Systems. 2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). :90–94.
.
2020. This paper presents a self-securing decentralized on-chip network interface (NI) architecture to Multicore System-on-Chip (McSoC) platforms. To protect intra-chip communication within McSoC, security framework proposal resides in initiator and target NIs. A comparison between block cipher and lightweight cryptographic algorithms is then given, so we can figure out the most suitable cipher for network-on-chip (NoC) architectures. AES and LED security algorithms was a subject of this comparison. The designs are developed in Xilinx ISE 14.7 tool using VHDL language.
SmartFork: Partitioned Multicast Allocation and Switching in Network-on-Chip Routers. 2020 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
.
2020. Multicast on-chip communication is encountered in various cache-coherence protocols targeting multi-core processors, and its pervasiveness is increasing due to the proliferation of machine learning accelerators. In-network handling of multicast traffic imposes additional switching-level restrictions to guarantee deadlock freedom, while it stresses the allocation efficiency of Network-on-Chip (NoC) routers. In this work, we propose a novel NoC router microarchitecture, called SmartFork, which employs a versatile and cost-efficient multicast packet replication scheme that allows the design of high-throughput and low-cost NoCs. The design is adapted to the average branch splitting observed in real-world multicast routing algorithms. Compared to state-of-the-art NoC multicast approaches, SmartFork is demonstrated to yield higher performance in terms of latency and throughput, while still offering a cost-effective implementation.
Securing Network-on-Chip Using Incremental Cryptography. 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :168–175.
.
2020. Network-on-chip (NoC) has become the standard communication fabric for on-chip components in modern System-on-chip (SoC) designs. Since NoC has visibility to all communications in the SoC, it has been one of the primary targets for security attacks. While packet encryption can provide secure communication, it can introduce unacceptable energy and performance overhead due to the resource-constrained nature of SoC designs. In this paper, we propose a lightweight encryption scheme that is implemented on the network interface. Our approach improves the performance of encryption without compromising security using incremental cryptography, which exploits the unique NoC traffic characteristics. Experimental results demonstrate that our proposed approach significantly (up to 57%, 30% on average) reduces the encryption time compared to traditional approaches with negligible (less than 2%) impact on area overhead.
A novel Network-on-Chip security algorithm for tolerating Byzantine faults. 2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). :1–6.
.
2020. Since the number of processors and cores on a single chip is increasing, the interconnection among them becomes significant. Network-on-Chip (NoC) has direct access to all resources and information within a System-on-Chip (SoC), rendering it appealing to attackers. Malicious attacks targeting NoC are a major cause of performance depletion and they can cause arbitrary behavior of links or routers, that is, Byzantine faults. Byzantine faults have been thoroughly investigated in the context of Distributed systems however not in Very Large Scale Integration (VLSI) systems. Hence, in this paper we propose a novel fault model followed by the design and implementation of lightweight algorithms, based on Software Defined Network-on-Chip (SDNoC) architecture. The proposed algorithms can be used to build highly available NoCs and can tolerate Byzantine faults. Additionally, a set of different scenarios has been simulated and the results demonstrate that by using the proposed algorithms the packet loss decreases between 65% and 76% under Transpose traffic, 67% and 77% under BitReverse and 55% and 66% under Uniform traffic.
A Benchmark Suite of Hardware Trojans for On-Chip Networks. IEEE Access. 7:102002—102009.
.
2019. As recently studied, network-on-chip (NoC) suffers growing threats from hardware trojans (HTs), leading to performance degradation or information leakage when it provides communication service in many/multi-core systems. Therefore, defense techniques against NoC HTs experience rapid development in recent years. However, to the best of our knowledge, there are few standard benchmarks developed for the defense techniques evaluation. To address this issue, in this paper, we design a suite of benchmarks which involves multiple NoCs with different HTs, so that researchers can compare various HT defense methods fairly by making use of them. We first briefly introduce the features of target NoC and its infected modules in our benchmarks, and then, detail the design of our NoC HTs in a one-by-one manner. Finally, we evaluate our benchmarks through extensive simulations and report the circuit cost of NoC HTs in terms of area and power consumption, as well as their effects on NoC performance. Besides, comprehensive experiments, including functional testing and side channel analysis are performed to assess the stealthiness of our HTs.
Networks-on-Chip based Deep Neural Networks Accelerators for IoT Edge Devices. 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :227—234.
.
2019. The need for performing deep neural network inferences on resource-constrained embedded devices (e.g., Internet of Things nodes) requires specialized architectures to achieve the best trade-off among performance, energy, and cost. One of the most promising architectures in this context is based on massive parallel and specialized cores interconnected by means of a Network-on-Chip (NoC). In this paper, we extensively evaluate NoC-based deep neural network accelerators by exploring the design space spanned by several architectural parameters including, network size, routing algorithm, local memory size, link width, and number of memory interfaces. We show how latency is mainly dominated by the on-chip communication whereas energy consumption is mainly accounted by memory (both on-chip and off-chip). The outcome of the analysis, thus, pushes toward a research line devoted to the optimization of the on-chip communication fabric and the memory subsystem for performance improvement and energy efficiency, respectively.
Detecting and Mitigating Low-and-Slow DoS Attacks in NoC-based MPSoCs. 2019 14th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC). :82—89.
.
2019. As Multi-Processor Systems-on-Chip (MPSoCs) permeate the Internet by powering IoT devices, they are exposed to new threats. One major threat is Denial-of-Service (DoS) attacks, which make communication services slow or even unavailable. While mainly studied on desktop and server systems, some DoS attacks on mobile devices and Network-on-Chip (NoC) platforms have also been considered. In the context of NoC-based MPSoC architectures, previous works have explored flooding DoS attacks and their countermeasures, however, these protection techniques are ineffective to mitigate new DoS attacks. Recently, a shift of the network attack paradigm from flooding DoS to Low-and-Slow DoS has been observed. To this end, we present two contributions. First, we demonstrate, for the first time, the impact of Low-and-Slow DoS attacks in NoC environments. Second, we propose a lightweight online monitor able to detect and mitigate these attacks. Results show that our countermeasure is feasible and that it effectively mitigates this new attack. Moreover, since the monitors are placed at the entry points of the network, both, single- and multi-source attacks can be neutralized.