Biblio
As chips become more and more connected, they are more exposed (both to network and to physical attacks). Therefore one shall ensure they enjoy a sufficient protection level. Security within chips is accordingly becoming a hot topic. Incident detection and reporting is one novel function expected from chips. In this talk, we explain why it is worthwhile to resort to Artificial Intelligence (AI) for security event handling. Drivers are the need to aggregate multiple and heterogeneous security sensors, the need to digest this information quickly to produce exploitable information, and so while maintaining a low false positive detection rate. Key features are adequate learning procedures and fast and secure classification accelerated by hardware. A challenge is to embed such security-oriented AI logic, while not compromising chip power budget and silicon area. This talk accounts for the opportunities permitted by the symbiotic encounter between chip security and AI.
In this work, an approach for the automatic analysis of people trajectories is presented, using a multi-camera and card reader system. Data is first extracted from surveillance cameras and card readers to create trajectories which are sequences of paths and activities. A distance model is proposed to compare sequences and calculate similarities. The popular unsupervised model One-Class Support Vector Machine (One-Class SVM) is used to train a detector. The proposed method classifies trajectories as normal or abnormal and can be used in two modes: off-line and real-time. Experiments are based on data simulation corresponding to an attack scenario proposed by a security expert. Results show that the proposed method successfully detects the abnormal sequences in the scenario with very low false alarm rate.
As a plethora of wearable devices are being introduced, significant concerns exist on the privacy and security of personal data stored on these devices. Expanding on recent works of using electrocardiogram (ECG) as a modality for biometric authentication, in this work, we investigate the possibility of using personal ECG signals as the individually unique source for physical unclonable function (PUF), which eventually can be used as the key for encryption and decryption engines. We present new signal processing and machine learning algorithms that learn and extract maximally different ECG features for different individuals and minimally different ECG features for the same individual over time. Experimental results with a large 741-subject in-house ECG database show that the distributions of the intra-subject (same person) Hamming distance of extracted ECG features and the inter-subject Hamming distance have minimal overlap. 256-b random numbers generated from the ECG features of 648 (out of 741) subjects pass the NIST randomness tests.
In this study, we present WindTalker, a novel and practical keystroke inference framework that allows an attacker to infer the sensitive keystrokes on a mobile device through WiFi-based side-channel information. WindTalker is motivated from the observation that keystrokes on mobile devices will lead to different hand coverage and the finger motions, which will introduce a unique interference to the multi-path signals and can be reflected by the channel state information (CSI). The adversary can exploit the strong correlation between the CSI fluctuation and the keystrokes to infer the user's number input. WindTalker presents a novel approach to collect the target's CSI data by deploying a public WiFi hotspot. Compared with the previous keystroke inference approach, WindTalker neither deploys external devices close to the target device nor compromises the target device. Instead, it utilizes the public WiFi to collect user's CSI data, which is easy-to-deploy and difficult-to-detect. In addition, it jointly analyzes the traffic and the CSI to launch the keystroke inference only for the sensitive period where password entering occurs. WindTalker can be launched without the requirement of visually seeing the smart phone user's input process, backside motion, or installing any malware on the tablet. We implemented Windtalker on several mobile phones and performed a detailed case study to evaluate the practicality of the password inference towards Alipay, the largest mobile payment platform in the world. The evaluation results show that the attacker can recover the key with a high successful rate.
We develop and evaluate a data hiding method that enables smartphones to encrypt and embed sensitive information into carrier streams of sensor data. Our evaluation considers multiple handsets and a variety of data types, and we demonstrate that our method has a computational cost that allows real-time data hiding on smartphones with negligible distortion of the carrier stream. These characteristics make it suitable for smartphone applications involving privacy-sensitive data such as medical monitoring systems and digital forensics tools.
When filling out privacy-related forms in public places such as hospitals or clinics, people usually are not aware that the sound of their handwriting leaks personal information. In this paper, we explore the possibility of eavesdropping on handwriting via nearby mobile devices based on audio signal processing and machine learning. By presenting a proof-of-concept system, WritingHacker, we show the usage of mobile devices to collect the sound of victims' handwriting, and to extract handwriting-specific features for machine learning based analysis. WritingHacker focuses on the situation where the victim's handwriting follows certain print style. An attacker can keep a mobile device, such as a common smart-phone, touching the desk used by the victim to record the audio signals of handwriting. Then the system can provide a word-level estimate for the content of the handwriting. To reduce the impacts of various writing habits and writing locations, the system utilizes the methods of letter clustering and dictionary filtering. Our prototype system's experimental results show that the accuracy of word recognition reaches around 50% - 60% under certain conditions, which reveals the danger of privacy leakage through the sound of handwriting.

