Visible to the public Biblio

Filters: Keyword is energy storage  [Clear All Filters]
2021-11-29
Gao, Hongjun, Liu, Youbo, Liu, Zhenyu, Xu, Song, Wang, Renjun, Xiang, Enmin, Yang, Jie, Qi, Mohan, Zhao, Yinbo, Pan, Hongjin et al..  2020.  Optimal Planning of Distribution Network Based on K-Means Clustering. 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). :2135–2139.
The reform of electricity marketization has bred multiple market agents. In order to maximize the total social benefits on the premise of ensuring the security of the system and taking into account the interests of multiple market agents, a bi-level optimal allocation model of distribution network with multiple agents participating is proposed. The upper level model considers the economic benefits of energy and service providers, which are mainly distributed power investors, energy storage operators and distribution companies. The lower level model considers end-user side economy and actively responds to demand management to ensure the highest user satisfaction. The K-means multi scenario analysis method is used to describe the time series characteristics of wind power, photovoltaic power and load. The particle swarm optimization (PSO) algorithm is used to solve the bi-level model, and IEEE33 node system is used to verify that the model can effectively consider the interests of multiple agents while ensuring the security of the system.
2021-09-07
Liu, Shu, Tao, Xingyu, Hu, Wenmin.  2020.  Planning Method of Transportation and Power Coupled System Based on Road Expansion Model. 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). :361–366.
In this paper, a planning method of transportation-power coupled system based on road expansion model is proposed. First of all, based on the Wardrop equilibrium state, the traffic flow is distributed, to build the road expansion model and complete the traffic network modeling. It is assumed that the road charging demand is directly proportional to the road traffic flow, and the charging facilities will cause a certain degree of congestion on the road. This mutual influence relationship to establish a coupling system of transportation network and power network is used for the planning. In the planning method, the decision variables include the location of charging facilities, the setting of energy storage systems and the road expansion scheme. The planning goal is to minimize the investment cost and operation cost. The CPLEX solver is used to solve the mixed integer nonlinear programming problem. Finally, the simulation analysis is carried out to verify the validity and feasibility of the planning method, which can comprehensively consider the road expansion cost and travel time cost, taking a coupled system of 5-node traffic system and IEEE14 node distribution network as example.
2021-06-02
Scarabaggio, Paolo, Carli, Raffaele, Dotoli, Mariagrazia.  2020.  A game-theoretic control approach for the optimal energy storage under power flow constraints in distribution networks. 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE). :1281—1286.
Traditionally, the management of power distribution networks relies on the centralized implementation of the optimal power flow and, in particular, the minimization of the generation cost and transmission losses. Nevertheless, the increasing penetration of both renewable energy sources and independent players such as ancillary service providers in modern networks have made this centralized framework inadequate. Against this background, we propose a noncooperative game-theoretic framework for optimally controlling energy storage systems (ESSs) in power distribution networks. Specifically, in this paper we address a power grid model that comprehends traditional loads, distributed generation sources and several independent energy storage providers, each owning an individual ESS. Through a rolling-horizon approach, the latter participate in the grid optimization process, aiming both at increasing the penetration of distributed generation and leveling the power injection from the transmission grid. Our framework incorporates not only economic factors but also grid stability aspects, including the power flow constraints. The paper fully describes the distribution grid model as well as the underlying market hypotheses and policies needed to force the energy storage providers to find a feasible equilibrium for the network. Numerical experiments based on the IEEE 33-bus system confirm the effectiveness and resiliency of the proposed framework.
2021-03-22
Hosseinipour, A., Hojabri, H..  2020.  Small-Signal Stability Analysis and Active Damping Control of DC Microgrids Integrated With Distributed Electric Springs. IEEE Transactions on Smart Grid. 11:3737–3747.
Series DC electric springs (DCESs) are a state-of-the-art demand-side management (DSM) technology with the capability to reduce energy storage requirements of DC microgrids by manipulating the power of non-critical loads (NCLs). As the stability of DC microgrids is highly prone to dynamic interactions between the system active and passive components, this study intends to conduct a comprehensive small-signal stability analysis of a community DC microgrid integrated with distributed DCESs considering the effect of destabilizing constant power loads (CPLs). For this purpose, after deriving the small-signal model of a DCES-integrated microgrid, the sensitivity of the system dominant frequency modes to variations of various physical and control parameters is evaluated by means of eigenvalue analysis. Next, an active damping control method based on virtual RC parallel impedance is proposed for series DCESs to compensate for their slow dynamic response and to provide a dynamic stabilization function within the microgrid. Furthermore, impedance-based stability analysis is utilized to study the DC microgrid expandability in terms of integration with multiple DCESs. Finally, several case studies are presented to verify analytical findings of the paper and to evaluate the dynamic performance of the DC microgrid.
2021-02-16
Kang, E., Schobbens, P..  2020.  InFoCPS: Integrating Formal Analysis of Cyber-Physical Systems with Energy Prognostics. 2020 9th Mediterranean Conference on Embedded Computing (MECO). :1—5.
This paper is related to dissemination and exploitation of the InFoCPS PhD research project: Failure of Cyber-Physical Systems (CPS) may cause extensive damage. Safety standards emphasize the use of formal analysis in CPS development processes. Performance degradation assessment and estimation of lifetime of energy storage (electric batteries) are vital in supporting maintenance decisions and guaranteeing CPS reliability. Existing formal analysis techniques mainly focus on specifying energy constraints in simplified manners and checking whether systems operate within given energy bounds. Leading to overlooked energy features that impede development of trustworthy CPS. Prognostics and health management (PHM) estimate energy uncertainty and predict remaining life of systems. We aim to utilize PHM techniques to rigorously model dynamic energy behaviors; resulting models are amenable to formal analysis. This project will increase the degree of maintenance of CPS while (non)-functional requirements are preserved correctly.
2021-02-08
Kwasinski, A..  2020.  Modeling of Cyber-Physical Intra-Dependencies in Electric Power Grids and Their Effect on Resilience. 2020 8th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems. :1–6.
This paper studies the modeling of cyber-physical dependencies observed within power grids and the effects of these intra-dependencies, on power grid resilience, which is evaluated quantitatively. A fundamental contribution of this paper is the description of the critically important role played by cyber-physical buffers as key components to limit the negative effect of intra-dependencies on power grids resilience. Although resilience issues in the electric power provision service could be limited thanks to the use of local energy storage devices as the realization of service buffers, minimal to no autonomy in data connectivity buffers make cyber vulnerabilities specially critical in terms of resilience. This paper also explains how these models can be used for improved power grids resilience planning considering internal cyber-physical interactions.
2020-12-21
Cheng, Z., Chow, M.-Y..  2020.  An Augmented Bayesian Reputation Metric for Trustworthiness Evaluation in Consensus-based Distributed Microgrid Energy Management Systems with Energy Storage. 2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES). 1:215–220.
Consensus-based distributed microgrid energy management system is one of the most used distributed control strategies in the microgrid area. To improve its cybersecurity, the system needs to evaluate the trustworthiness of the participating agents in addition to the conventional cryptography efforts. This paper proposes a novel augmented reputation metric to evaluate the agents' trustworthiness in a distributed fashion. The proposed metric adopts a novel augmentation method to substantially improve the trust evaluation and attack detection performance under three typical difficult-to-detect attack patterns. The proposed metric is implemented and validated on a real-time HIL microgrid testbed.
2020-11-20
Lu, X., Guan, Z., Zhou, X., Du, X., Wu, L., Guizani, M..  2019.  A Secure and Efficient Renewable Energy Trading Scheme Based on Blockchain in Smart Grid. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1839—1844.
Nowadays, with the diversification and decentralization of energy systems, the energy Internet makes it possible to interconnect distributed energy sources and consumers. In the energy trading market, the traditional centralized model relies entirely on trusted third parties. However, as the number of entities involved in the transactions grows and the forms of transactions diversify, the centralized model gradually exposes problems such as insufficient scalability, High energy consumption, and low processing efficiency. To address these challenges, we propose a secure and efficient energy renewable trading scheme based on blockchain. In our scheme, the electricity market trading model is divided into two levels, which can not only protect the privacy, but also achieve a green computing. In addition, in order to adapt to the relatively weak computing power of the underlying equipment in smart grid, we design a credibility-based equity proof mechanism to greatly improve the system availability. Compared with other similar distributed energy trading schemes, we prove the advantages of our scheme in terms of high operational efficiency and low computational overhead through experimental evaluations. Additionally, we conduct a detailed security analysis to demonstrate that our solution meets the security requirements.
2020-02-10
Shahinzadeh, Hossein, Moradi, Jalal, Gharehpetian, Gevork B., Nafisi, Hamed, Abedi, Mehrdad.  2019.  IoT Architecture for Smart Grids. 2019 International Conference on Protection and Automation of Power System (IPAPS). :22–30.
The tremendous advances in information and communications technology (ICT), as well as the embedded systems, have been led to the emergence of the novel concept of the internet of things (IoT). Enjoying IoT-based technologies, many objects and components can be connected to each other through the internet or other modern communicational platforms. Embedded systems which are computing machines for special purposes like those utilized in high-tech devices, smart buildings, aircraft, and vehicles including advanced controllers, sensors, and meters with the ability of information exchange using IT infrastructures. The phrase "internet", in this context, does not exclusively refer to the World Wide Web rather than any type of server-based or peer-to-peer networks. In this study, the application of IoT in smart grids is addressed. Hence, at first, an introduction to the necessity of deployment of IoT in smart grids is presented. Afterwards, the applications of IoT in three levels of generation, transmission, and distribution is proposed. The generation level is composed of applications of IoT in renewable energy resources, wind and solar in particular, thermal generation, and energy storage facilities. The deployment of IoT in transmission level deals with congestion management in power system and guarantees the security of the system. In the distribution level, the implications of IoT in active distribution networks, smart cities, microgrids, smart buildings, and industrial sector are evaluated.
Neema, Himanshu, Vardhan, Harsh, Barreto, Carlos, Koutsoukos, Xenofon.  2019.  Web-Based Platform for Evaluation of Resilient and Transactive Smart-Grids. 2019 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1–6.
Today's smart-grids have seen a clear rise in new ways of energy generation, transmission, and storage. This has not only introduced a huge degree of variability, but also a continual shift away from traditionally centralized generation and storage to distributed energy resources (DERs). In addition, the distributed sensors, energy generators and storage devices, and networking have led to a huge increase in attack vectors that make the grid vulnerable to a variety of attacks. The interconnection between computational and physical components through a largely open, IP-based communication network enables an attacker to cause physical damage through remote cyber-attacks or attack on software-controlled grid operations via physical- or cyber-attacks. Transactive Energy (TE) is an emerging approach for managing increasing DERs in the smart-grids through economic and control techniques. Transactive Smart-Grids use the TE approach to improve grid reliability and efficiency. However, skepticism remains in their full-scale viability for ensuring grid reliability. In addition, different TE approaches, in specific situations, can lead to very different outcomes in grid operations. In this paper, we present a comprehensive web-based platform for evaluating resilience of smart-grids against a variety of cyber- and physical-attacks and evaluating impact of various TE approaches on grid performance. We also provide several case-studies demonstrating evaluation of TE approaches as well as grid resilience against cyber and physical attacks.
2019-06-24
You, Y., Li, Z., Oechtering, T. J..  2018.  Optimal Privacy-Enhancing And Cost-Efficient Energy Management Strategies For Smart Grid Consumers. 2018 IEEE Statistical Signal Processing Workshop (SSP). :826–830.

The design of optimal energy management strategies that trade-off consumers' privacy and expected energy cost by using an energy storage is studied. The Kullback-Leibler divergence rate is used to assess the privacy risk of the unauthorized testing on consumers' behavior. We further show how this design problem can be formulated as a belief state Markov decision process problem so that standard tools of the Markov decision process framework can be utilized, and the optimal solution can be obtained by using Bellman dynamic programming. Finally, we illustrate the privacy-enhancement and cost-saving by numerical examples.

2018-02-21
Marksteiner, S., Vallant, H..  2017.  Towards a secure smart grid storage communications gateway. 2017 Smart City Symposium Prague (SCSP). :1–6.

This research in progress paper describes the role of cyber security measures undertaken in an ICT system for integrating electric storage technologies into the grid. To do so, it defines security requirements for a communications gateway and gives detailed information and hands-on configuration advice on node and communication line security, data storage, coping with backend M2M communications protocols and examines privacy issues. The presented research paves the road for developing secure smart energy communications devices that allow enhancing energy efficiency. The described measures are implemented in an actual gateway device within the HORIZON 2020 project STORY, which aims at developing new ways to use storage and demonstrating these on six different demonstration sites.

2018-02-14
Backes, M., Keefe, K., Valdes, A..  2017.  A microgrid ontology for the analysis of cyber-physical security. 2017 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1–6.
The IEC 61850 protocol suite for electrical sub-station automation enables substation configuration and design for protection, communication, and control. These power system applications can be formally verified through use of object models, common data classes, and message classes. The IEC 61850-7-420 DER (Distributed Energy Resource) extension further defines object classes for assets such as types of DER (e.g., energy storage, photovoltaic), DER unit controllers, and other DER-associated devices (e.g., inverter). These object classes describe asset-specific attributes such as state of charge, capacity limits, and ramp rate. Attributes can be fixed (rated capacity of the device) dynamic (state of charge), or binary (on or off, dispatched or off-line, operational or fault state). We sketch out a proposed ontology based on the 61850 and 61850-7-420 DER object classes to model threats against a micro-grid, which is an electrical system consisting of controllable loads and distributed generation that can function autonomously (in island mode) or connected to a larger utility grid. We consider threats against the measurements on which the control loop is based, as well as attacks against the control directives and the communication infrastructure. We use this ontology to build a threat model using the ADversary View Security Evaluation (ADVISE) framework, which enables identification of attack paths based on adversary objectives (for example, destabilize the entire micro-grid by reconnecting to the utility without synchronization) and helps identify defender strategies. Furthermore, the ADVISE method provides quantitative security metrics that can help inform trade-off decisions made by system architects and controls.
2017-03-08
Ji, Y., Wang, J., Yan, S., Gao, W., Li, H..  2015.  Optimal microgrid energy management integrating intermittent renewable energy and stochastic load. 2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :334–338.

In this paper, we focus on energy management of distributed generators (DGs) and energy storage system (ESS) in microgrids (MG) considering uncertainties in renewable energy and load demand. The MG energy management problem is formulated as a two-stage stochastic programming model based on optimization principle. Then, the optimization model is decomposed into a mixed integer quadratic programming problem by using discrete stochastic scenarios to approximate the continuous random variables. A Scenarios generation approach based on time-homogeneous Markov chain model is proposed to generate simulated time-series of renewable energy generation and load demand. Finally, the proposed stochastic programming model is tested in a typical LV network and solved by Matlab optimization toolbox. The simulation results show that the proposed stochastic programming model has a better performance to obtain robust scheduling solutions and lower the operating cost compared to the deterministic optimization modeling methods.

2017-02-27
Li, Z., Oechtering, T. J..  2015.  Privacy on hypothesis testing in smart grids. 2015 IEEE Information Theory Workshop - Fall (ITW). :337–341.

In this paper, we study the problem of privacy information leakage in a smart grid. The privacy risk is assumed to be caused by an unauthorized binary hypothesis testing of the consumer's behaviour based on the smart meter readings of energy supplies from the energy provider. Another energy supplies are produced by an alternative energy source. A controller equipped with an energy storage device manages the energy inflows to satisfy the energy demand of the consumer. We study the optimal energy control strategy which minimizes the asymptotic exponential decay rate of the minimum Type II error probability in the unauthorized hypothesis testing to suppress the privacy risk. Our study shows that the cardinality of the energy supplies from the energy provider for the optimal control strategy is no more than two. This result implies a simple objective of the optimal energy control strategy. When additional side information is available for the adversary, the optimal control strategy and privacy risk are compared with the case of leaking smart meter readings to the adversary only.

2015-05-05
Han Huang, Jun Zhang, Guanglong Xie.  2014.  RESEARCH on the future functions and MODALITY of smart grid and its key technologies. Electricity Distribution (CICED), 2014 China International Conference on. :1241-1245.

Power network is important part of national comprehensive energy resources transmission system in the way of energy security promise and the economy society running. Meanwhile, because of many industries involved, the development of grid can push national innovation ability. Nowadays, it makes the inner of smart grid flourish that material science, computer technique and information and communication technology go forward. This paper researches the function and modality of smart grid on energy, geography and technology dimensions. The analysis on the technology dimension is addressed on two aspects which are network control and interaction with customer. The mapping relationship between functions fo smart grid and eight key technologies, which are Large-capacity flexible transmission technology, DC power distribution technology, Distributed power generation technology, Large-scale energy storage technology, Real-time tracking simulation technology, Intelligent electricity application technology, The big data analysis and cloud computing technology, Wide-area situational awareness technology, is given. The research emphasis of the key technologies is proposed.
 

2015-05-01
Hong Liu, Huansheng Ning, Yan Zhang, Qingxu Xiong, Yang, L.T..  2014.  Role-Dependent Privacy Preservation for Secure V2G Networks in the Smart Grid. Information Forensics and Security, IEEE Transactions on. 9:208-220.

Vehicle-to-grid (V2G), involving both charging and discharging of battery vehicles (BVs), enhances the smart grid substantially to alleviate peaks in power consumption. In a V2G scenario, the communications between BVs and power grid may confront severe cyber security vulnerabilities. Traditionally, authentication mechanisms are solely designed for the BVs when they charge electricity as energy customers. In this paper, we first show that, when a BV interacts with the power grid, it may act in one of three roles: 1) energy demand (i.e., a customer); 2) energy storage; and 3) energy supply (i.e., a generator). In each role, we further demonstrate that the BV has dissimilar security and privacy concerns. Hence, the traditional approach that only considers BVs as energy customers is not universally applicable for the interactions in the smart grid. To address this new security challenge, we propose a role-dependent privacy preservation scheme (ROPS) to achieve secure interactions between a BV and power grid. In the ROPS, a set of interlinked subprotocols is proposed to incorporate different privacy considerations when a BV acts as a customer, storage, or a generator. We also outline both centralized and distributed discharging operations when a BV feeds energy back into the grid. Finally, security analysis is performed to indicate that the proposed ROPS owns required security and privacy properties and can be a highly potential security solution for V2G networks in the smart grid. The identified security challenge as well as the proposed ROPS scheme indicates that role-awareness is crucial for secure V2G networks.