Visible to the public Biblio

Filters: Keyword is mobile robots  [Clear All Filters]
2020-12-14
Lee, M.-F. R., Chien, T.-W..  2020.  Artificial Intelligence and Internet of Things for Robotic Disaster Response. 2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS). :1–6.
After the Fukushima nuclear disaster and the Wenchuan earthquake, the relevant government agencies recognized the urgency of disaster-straining robots. There are many natural or man-made disasters in Taiwan, and it is usually impossible to dispatch relevant personnel to search or explore immediately. The project proposes to use the architecture of Intelligent Internet of Things (AIoT) (Artificial Intelligence + Internet of Things) to coordinate with ground, surface and aerial and underwater robots, and apply them to disaster response, ground, surface and aerial and underwater swarm robots to collect environmental big data from the disaster site, and then through the Internet of Things. From the field workstation to the cloud for “training” deep learning model and “model verification”, the trained deep learning model is transmitted to the field workstation via the Internet of Things, and then transmitted to the ground, surface and aerial and underwater swarm robots for on-site continuing objects classification. Continuously verify the “identification” with the environment and make the best decisions for the response. The related tasks include monitoring, search and rescue of the target.
Ababii, V., Sudacevschi, V., Braniste, R., Nistiriuc, A., Munteanu, S., Borozan, O..  2020.  Multi-Robot System Based on Swarm Intelligence for Optimal Solution Search. 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1–5.
This work presents the results of the Multi-Robot System designing that works on the basis of Swarm Intelligence models and is used to search for optimal solutions. The process of searching for optimal solutions is performed based on a field of gradient vectors that can be generated by ionizing radiation sources, radio-electro-magnetic devices, temperature generating sources, etc. The concept of the operation System is based on the distribution in the search space of a multitude of Mobile Robots that form a Mesh network between them. Each Mobile Robot has a set of ultrasonic sensors for excluding the collisions with obstacles, two sensors for identifying the gradient vector of the analyzed field, resources for wireless storage, processing and communication. The direction of the Mobile Robot movement is determined by the rotational speed of two DC motors which is calculated based on the models of Artificial Neural Networks. Gradient vectors generated by all Mobile Robots in the system structure are used to calculate the movement direction.
2020-12-11
Fujiwara, N., Shimasaki, K., Jiang, M., Takaki, T., Ishii, I..  2019.  A Real-time Drone Surveillance System Using Pixel-level Short-time Fourier Transform. 2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). :303—308.

In this study we propose a novel method for drone surveillance that can simultaneously analyze time-frequency responses in all pixels of a high-frame-rate video. The propellers of flying drones rotate at hundreds of Hz and their principal vibration frequency components are much higher than those of their background objects. To separate the pixels around a drone's propellers from its background, we utilize these time-series features for vibration source localization with pixel-level short-time Fourier transform (STFT). We verify the relationship between the number of taps in the STFT computation and the performance of our algorithm, including the execution time and the localization accuracy, by conducting experiments under various conditions, such as degraded appearance, weather, and defocused blur. The robustness of the proposed algorithm is also verified by localizing a flying multi-copter in real-time in an outdoor scenario.

2020-12-01
Zhang, H., Liu, H., Deng, L., Wang, P., Rong, X., Li, Y., Li, B., Wang, H..  2018.  Leader Recognition and Tracking for Quadruped Robots. 2018 IEEE International Conference on Information and Automation (ICIA). :1438—1443.

To meet the high requirement of human-machine interaction, quadruped robots with human recognition and tracking capability are studied in this paper. We first introduce a marker recognition system which uses multi-thread laser scanner and retro-reflective markers to distinguish the robot's leader and other objects. When the robot follows leader autonomously, the variant A* algorithm which having obstacle grids extended virtually (EA*) is used to plan the path. But if robots need to track and follow the leader's path as closely as possible, it will trust that the path which leader have traveled is safe enough and uses the incremental form of EA* algorithm (IEA*) to reproduce the trajectory. The simulation and experiment results illustrate the feasibility and effectiveness of the proposed algorithms.

Nam, C., Li, H., Li, S., Lewis, M., Sycara, K..  2018.  Trust of Humans in Supervisory Control of Swarm Robots with Varied Levels of Autonomy. 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :825—830.

In this paper, we study trust-related human factors in supervisory control of swarm robots with varied levels of autonomy (LOA) in a target foraging task. We compare three LOAs: manual, mixed-initiative (MI), and fully autonomous LOA. In the manual LOA, the human operator chooses headings for a flocking swarm, issuing new headings as needed. In the fully autonomous LOA, the swarm is redirected automatically by changing headings using a search algorithm. In the mixed-initiative LOA, if performance declines, control is switched from human to swarm or swarm to human. The result of this work extends the current knowledge on human factors in swarm supervisory control. Specifically, the finding that the relationship between trust and performance improved for passively monitoring operators (i.e., improved situation awareness in higher LOAs) is particularly novel in its contradiction of earlier work. We also discover that operators switch the degree of autonomy when their trust in the swarm system is low. Last, our analysis shows that operator's preference for a lower LOA is confirmed for a new domain of swarm control.

Herse, S., Vitale, J., Tonkin, M., Ebrahimian, D., Ojha, S., Johnston, B., Judge, W., Williams, M..  2018.  Do You Trust Me, Blindly? Factors Influencing Trust Towards a Robot Recommender System 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). :7—14.

When robots and human users collaborate, trust is essential for user acceptance and engagement. In this paper, we investigated two factors thought to influence user trust towards a robot: preference elicitation (a combination of user involvement and explanation) and embodiment. We set our experiment in the application domain of a restaurant recommender system, assessing trust via user decision making and perceived source credibility. Previous research in this area uses simulated environments and recommender systems that present the user with the best choice from a pool of options. This experiment builds on past work in two ways: first, we strengthened the ecological validity of our experimental paradigm by incorporating perceived risk during decision making; and second, we used a system that recommends a nonoptimal choice to the user. While no effect of embodiment is found for trust, the inclusion of preference elicitation features significantly increases user trust towards the robot recommender system. These findings have implications for marketing and health promotion in relation to Human-Robot Interaction and call for further investigation into the development and maintenance of trust between robot and user.

Losey, D. P., Sadigh, D..  2019.  Robots that Take Advantage of Human Trust. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :7001—7008.

Humans often assume that robots are rational. We believe robots take optimal actions given their objective; hence, when we are uncertain about what the robot's objective is, we interpret the robot's actions as optimal with respect to our estimate of its objective. This approach makes sense when robots straightforwardly optimize their objective, and enables humans to learn what the robot is trying to achieve. However, our insight is that-when robots are aware that humans learn by trusting that the robot actions are rational-intelligent robots do not act as the human expects; instead, they take advantage of the human's trust, and exploit this trust to more efficiently optimize their own objective. In this paper, we formally model instances of human-robot interaction (HRI) where the human does not know the robot's objective using a two-player game. We formulate different ways in which the robot can model the uncertain human, and compare solutions of this game when the robot has conservative, optimistic, rational, and trusting human models. In an offline linear-quadratic case study and a real-time user study, we show that trusting human models can naturally lead to communicative robot behavior, which influences end-users and increases their involvement.

Haider, C., Chebotarev, Y., Tsiourti, C., Vincze, M..  2019.  Effects of Task-Dependent Robot Errors on Trust in Human-Robot Interaction: A Pilot Study. 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :172—177.

The growing diffusion of robotics in our daily life demands a deeper understanding of the mechanisms of trust in human-robot interaction. The performance of a robot is one of the most important factors influencing the trust of a human user. However, it is still unclear whether the circumstances in which a robot fails to affect the user's trust. We investigate how the perception of robot failures may influence the willingness of people to cooperate with the robot by following its instructions in a time-critical task. We conducted an experiment in which participants interacted with a robot that had previously failed in a related or an unrelated task. We hypothesized that users' observed and self-reported trust ratings would be higher in the condition where the robot has previously failed in an unrelated task. A proof-of-concept study with nine participants timidly confirms our hypothesis. At the same time, our results reveal some flaws in the design experimental, and encourage a future large scale study.

Robinette, P., Novitzky, M., Fitzgerald, C., Benjamin, M. R., Schmidt, H..  2019.  Exploring Human-Robot Trust During Teaming in a Real-World Testbed. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :592—593.

Project Aquaticus is a human-robot teaming competition on the water involving autonomous surface vehicles and human operated motorized kayaks. Teams composed of both humans and robots share the same physical environment to play capture the flag. In this paper, we present results from seven competitions of our half-court (one participant versus one robot) game. We found that participants indicated more trust in more aggressive behaviors from robots.

2020-10-06
Marquis, Victoria, Ho, Rebecca, Rainey, William, Kimpel, Matthew, Ghiorzi, Joseph, Cricchi, William, Bezzo, Nicola.  2018.  Toward attack-resilient state estimation and control of autonomous cyber-physical systems. 2018 Systems and Information Engineering Design Symposium (SIEDS). :70—75.

This project develops techniques to protect against sensor attacks on cyber-physical systems. Specifically, a resilient version of the Kalman filtering technique accompanied with a watermarking approach is proposed to detect cyber-attacks and estimate the correct state of the system. The defense techniques are used in conjunction and validated on two case studies: i) an unmanned ground vehicle (UGV) in which an attacker alters the reference angle and ii) a Cube Satellite (CubeSat) in which an attacker modifies the orientation of the satellite degrading its performance. Based on this work, we show that the proposed techniques in conjunction achieve better resiliency and defense capability than either technique alone against spoofing and replay attacks.

Bidram, Ali, Damodaran, Lakshmisree, Fierro, Rafael.  2019.  Cybersecure Distributed Voltage Control of AC Microgrids. 2019 IEEE/IAS 55th Industrial and Commercial Power Systems Technical Conference (I CPS). :1—6.

In this paper, the cybersecurity of distributed secondary voltage control of AC microgrids is addressed. A resilient approach is proposed to mitigate the negative impacts of cyberthreats on the voltage and reactive power control of Distributed Energy Resources (DERs). The proposed secondary voltage control is inspired by the resilient flocking of a mobile robot team. This approach utilizes a virtual time-varying communication graph in which the quality of the communication links is virtualized and determined based on the synchronization behavior of DERs. The utilized control protocols on DERs ensure that the connectivity of the virtual communication graph is above a specific resilience threshold. Once the resilience threshold is satisfied the Weighted Mean Subsequence Reduced (WMSR) algorithm is applied to satisfy voltage restoration in the presence of malicious adversaries. A typical microgrid test system including 6 DERs is simulated to verify the validity of proposed resilient control approach.

Ramachandran, Ragesh K., Preiss, James A., Sukhatme, Gaurav S..  2019.  Resilience by Reconfiguration: Exploiting Heterogeneity in Robot Teams. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :6518—6525.

We propose a method to maintain high resource availability in a networked heterogeneous multi-robot system subject to resource failures. In our model, resources such as sensing and computation are available on robots. The robots are engaged in a joint task using these pooled resources. When a resource on a particular robot becomes unavailable (e.g., a sensor ceases to function), the system automatically reconfigures so that the robot continues to have access to this resource by communicating with other robots. Specifically, we consider the problem of selecting edges to be modified in the system's communication graph after a resource failure has occurred. We define a metric that allows us to characterize the quality of the resource distribution in the network represented by the communication graph. Upon a resource becoming unavailable due to failure, we reconFigure the network so that the resource distribution is brought as close to the maximal resource distribution as possible without a large change in the number of active inter-robot communication links. Our approach uses mixed integer semi-definite programming to achieve this goal. We employ a simulated annealing method to compute a spatial formation that satisfies the inter-robot distances imposed by the topology, along with other constraints. Our method can compute a communication topology, spatial formation, and formation change motion planning in a few seconds. We validate our method in simulation and real-robot experiments with a team of seven quadrotors.

2020-08-28
Brewer, John N., Dimitoglou, George.  2019.  Evaluation of Attack Vectors and Risks in Automobiles and Road Infrastructure. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :84—89.

The evolution of smart automobiles and vehicles within the Internet of Things (IoT) - particularly as that evolution leads toward a proliferation of completely autonomous vehicles - has sparked considerable interest in the subject of vehicle/automotive security. While the attack surface is wide, there are patterns of exploitable vulnerabilities. In this study we reviewed, classified according to their attack surface and evaluated some of the common vehicle and infrastructure attack vectors identified in the literature. To remediate these attack vectors, specific technical recommendations have been provided as a way towards secure deployments of smart automobiles and transportation infrastructures.

2020-07-27
Lambert, Christoph, Völp, Marcus, Decouchant, Jérémie, Esteves-Verissimo, Paulo.  2018.  Towards Real-Time-Aware Intrusion Tolerance. 2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS). :269–270.
Technologies such as Industry 4.0 or assisted/autonomous driving are relying on highly customized cyber-physical realtime systems. Those systems are designed to match functional safety regulations and requirements such as EN ISO 13849, EN IEC 62061 or ISO 26262. However, as systems - especially vehicles - are becoming more connected and autonomous, they become more likely to suffer from new attack vectors. New features may meet the corresponding safety requirements but they do not consider adversaries intruding through security holes with the purpose of bringing vehicles into unsafe states. As research goal, we want to bridge the gap between security and safety in cyber-physical real-time systems by investigating real-time-aware intrusion-tolerant architectures for automotive use-cases.
2020-05-22
Varricchio, Valerio, Frazzoli, Emilio.  2018.  Asymptotically Optimal Pruning for Nonholonomic Nearest-Neighbor Search. 2018 IEEE Conference on Decision and Control (CDC). :4459—4466.
Nearest-Neighbor Search (NNS) arises as a key component of sampling-based motion planning algorithms and it is known as their asymptotic computational bottleneck. Algorithms for exact Nearest-Neighbor Search rely on explicit distance comparisons to different extents. However, in motion planning, evaluating distances is generally a computationally demanding task, since the metric is induced by the minimum cost of steering a dynamical system between states. In the presence of driftless nonholonomic constraints, we propose efficient pruning techniques for the k-d tree algorithm that drastically reduce the number of distance evaluations performed during a query. These techniques exploit computationally convenient lower and upper bounds to the geodesic distance of the corresponding sub-Riemannian geometry. Based on asymptotic properties of the reachable sets, we show that the proposed pruning techniques are optimal, modulo a constant factor, and we provide experimental results with the Reeds-Shepp vehicle model.
2020-04-24
Rodriguez, Manuel, Fathy, Hosam.  2019.  Self-Synchronization of Connected Vehicles in Traffic Networks: What Happens When We Think of Vehicles as Waves? 2019 American Control Conference (ACC). :2651—2657.

In this paper we consider connected and autonomous vehicles (CAV) in a traffic network as moving waves defined by their frequency and phase. This outlook allows us to develop a multi-layer decentralized control strategy that achieves the following desirable behaviors: (1) safe spacing between vehicles traveling down the same road, (2) coordinated safe crossing at intersections of conflicting flows, (3) smooth velocity profiles when traversing adjacent intersections. The approach consist of using the Kuramoto equation to synchronize the phase and frequency of agents in the network. The output of this layer serves as the reference trajectory for a back-stepping controller that interfaces the first-order dynamics of the phase-domain layer and the second order dynamics of the vehicle. We show the performance of the strategy for a single intersection and a small urban grid network. The literature has focused on solving the intersection coordination problem in both a centralized and decentralized manner. Some authors have even used the Kuramoto equation to achieve synchronization of traffic lights. Our proposed strategy falls in the rubric of a decentralized approach, but unlike previous work, it defines the vehicles as the oscillating agents, and leverages their inter-connectivity to achieve network-wide synchronization. In this way, it combines the benefits of coordinating the crossing of vehicles at individual intersections and synchronizing flow from adjacent junctions.

2020-03-27
Lin, Nan, Zhang, Linrui, Chen, Yuxuan, Zhu, Yujun, Chen, Ruoxi, Wu, Peichen, Chen, Xiaoping.  2019.  Reinforcement Learning for Robotic Safe Control with Force Sensing. 2019 WRC Symposium on Advanced Robotics and Automation (WRC SARA). :148–153.

For the task with complicated manipulation in unstructured environments, traditional hand-coded methods are ineffective, while reinforcement learning can provide more general and useful policy. Although the reinforcement learning is able to obtain impressive results, its stability and reliability is hard to guarantee, which would cause the potential safety threats. Besides, the transfer from simulation to real-world also will lead in unpredictable situations. To enhance the safety and reliability of robots, we introduce the force and haptic perception into reinforcement learning. Force and tactual sensation play key roles in robotic dynamic control and human-robot interaction. We demonstrate that the force-based reinforcement learning method can be more adaptive to environment, especially in sim-to-real transfer. Experimental results show in object pushing task, our strategy is safer and more efficient in both simulation and real world, thus it holds prospects for a wide variety of robotic applications.

2020-03-02
Bhat, Sriharsha, Stenius, Ivan, Bore, Nils, Severholt, Josefine, Ljung, Carl, Torroba Balmori, Ignacio.  2019.  Towards a Cyber-Physical System for Hydrobatic AUVs. OCEANS 2019 - Marseille. :1–7.
Cyber-physical systems (CPSs) encompass a network of sensors and actuators that are monitored, controlled and integrated by a computing and communication core. As autonomous underwater vehicles (AUVs) become more intelligent and connected, new use cases in ocean production, security and environmental monitoring become feasible. Swarms of small, affordable and hydrobatic AUVs can be beneficial in substance cloud tracking and algae farming, and a CPS linking the AUVs with multi-fidelity simulations can improve performance while reducing risks and costs. In this paper, we present a CPS concept tightly linking the AUV network in ROS to virtual validation using Simulink and Gazebo. A robust hardware-software interface using the open-source UAVCAN-ROS bridge is described for enabling hardware-in-the-loop validation. Hardware features of the hydrobatic SAM AUV are described, with a focus on subsystem integration. Results presented include pre-tuning of controllers, validation of mission plans in simulation and real time subsystem performance in tank tests. These first results demonstrate the interconnection between different system elements and offer a proof of concept.
2020-01-20
Bauer, Sergei, Brunner, Martin, Schartner, Peter.  2019.  Lightweight Authentication for Low-End Control Units with Hardware Based Individual Keys. 2019 Third IEEE International Conference on Robotic Computing (IRC). :425–426.

In autonomous driving, security issues from robotic and automotive applications are converging toward each other. A novel approach for deriving secret keys using a lightweight cipher in the firmware of low-end control units is introduced. By evaluating the method on a typical low-end automotive platform, we demonstrate the reusability of the cipher for message authentication. The proposed solution counteracts a known security issue in the robotics and automotive domain.

2019-09-23
Babu, S., Markose, S..  2018.  IoT Enabled Robots with QR Code Based Localization. 2018 International Conference on Emerging Trends and Innovations In Engineering And Technological Research (ICETIETR). :1–5.

Robots are sophisticated form of IoT devices as they are smart devices that scrutinize sensor data from multiple sources and observe events to decide the best procedural actions to supervise and manoeuvre objects in the physical world. In this paper, localization of the robot is addressed by QR code Detection and path optimization is accomplished by Dijkstras algorithm. The robot can navigate automatically in its environment with sensors and shortest path is computed whenever heading measurements are updated with QR code landmark recognition. The proposed approach highly reduces computational burden and deployment complexity as it reflects the use of artificial intelligence to self-correct its course when required. An Encrypted communication channel is established over wireless local area network using SSHv2 protocol to transfer or receive sensor data(or commands) making it an IoT enabled Robot.

2019-02-21
Bi, Q., Huang, Y..  2018.  A Self-organized Shape Formation Method for Swarm Controlling. 2018 37th Chinese Control Conference (CCC). :7205–7209.
This paper presents a new approach for the shape formation based on the artificial method. It refers to the basic concept in the swarm intelligence: complex behaviors of the swarm can be formed with simple rules designed in the agents. In the framework, the distance image is used to generate not only an attraction field to keep all the agents in the given shape, but also repulsive force field among the agents to make them distribute uniformly. Compared to the traditional methods based on centralized control, the algorithm has properties of distributed and simple computation, convergence and robustness, which is very suitable for the swarm robots in the real world considering the limitation of communication, collision avoidance and calculation problems. We also show that some initial sensitive method can be improved in the similar way. The simulation results prove the proposed approach is suitable for convex. non-convex and line shapes.
Vaishnav, J., Uday, A. B., Poulose, T..  2018.  Pattern Formation in Swarm Robotic Systems. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :1466–1469.
Swarm robotics, a combination of Swarm intelligence and robotics, is inspired from how the nature swarms, such as flock of birds, swarm of bees, ants, fishes etc. These group behaviours show great flexibility and robustness which enable the robots to perform various tasks like pattern formation, rescue and military operation, space expedition etc. This paper discusses an algorithm for forming patterns, which are English alphabets, by identical robots, in a finite amount of time and also analyses outcome of the algorithm. In order to implement the algorithm, 9 identical circular robots of diameter 15 cm are used, each having a Node MCU module and a rotary encoder attached to one wheel of the robot. The robots are initially placed at the centres of an imaginary 3×3 grid, on a white sheet of paper, of dimensions 250cm × 250 cm. All the robots are connected to the laptop's network via wifi and data send from the laptop is received by the Node MCU modules. This data includes the distance to be moved and the angle to be turned by each robot in order to form the letter. The rotary encoders enable the robot to move specific distances and turn specific angles, with high accuracy, by real time feedback. The algorithm is written in Python and image processing is done using OpenCV. Certain approximations are used in order to implement collision avoidance. Finally after calibration, the word given as input, is formed letter by letter, using these 9 identical robots.
2019-02-08
Clark, G., Doran, M., Glisson, W..  2018.  A Malicious Attack on the Machine Learning Policy of a Robotic System. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :516-521.

The field of robotics has matured using artificial intelligence and machine learning such that intelligent robots are being developed in the form of autonomous vehicles. The anticipated widespread use of intelligent robots and their potential to do harm has raised interest in their security. This research evaluates a cyberattack on the machine learning policy of an autonomous vehicle by designing and attacking a robotic vehicle operating in a dynamic environment. The primary contribution of this research is an initial assessment of effective manipulation through an indirect attack on a robotic vehicle using the Q learning algorithm for real-time routing control. Secondly, the research highlights the effectiveness of this attack along with relevant artifact issues.

2019-01-16
Schneider, T., Schmidt, H..  2018.  NETSIM: A Realtime Virtual Ocean Hardware-in-the-loop Acoustic Modem Network Simulator. 2018 Fourth Underwater Communications and Networking Conference (UComms). :1–5.
This paper presents netsim, a combined software/hardware system for performing realtime realistic operation of autonomous underwater vehicles (AUVs) with acoustic modem telemetry in a virtual ocean environment. The design of the system is flexible to the choice of physical link hardware, allowing for the system to be tested against existing and new modems. Additionally, the virtual ocean channel simulator is designed to perform in real time by coupling less frequent asynchronous queries to high-fidelity models of the ocean environment and acoustic propagation with frequent pertubation-based updates for the exact position of the simulated AUVs. The results demonstrate the performance of this system using the WHOI Micro-Modem 2 hardware in the virtual ocean environment of the Arctic Beaufort Sea around 73 degrees latitude. The acoustic environment in this area has changed dramatically in recent years due to the changing climate.
Horton, M., Samanta, B., Reid, C., Chen, L., Kadlec, C..  2018.  Development of a Secure, Heterogeneous Cloud Robotics Infrastructure: Implementing a Mesh VPN and Robotic File System Security Practices. SoutheastCon 2018. :1–8.

Robotics and the Internet of Things (IoT) are enveloping our society at an exponential rate due to lessening costs and better availability of hardware and software. Additionally, Cloud Robotics and Robot Operating System (ROS) can offset onboard processing power. However, strong and fundamental security practices have not been applied to fully protect these systems., partially negating the benefits of IoT. Researchers are therefore tasked with finding ways of securing communications and systems. Since security and convenience are oftentimes at odds, securing many heterogeneous components without compromising performance can be daunting. Protecting systems from attacks and ensuring that connections and instructions are from approved devices, all while maintaining the performance is imperative. This paper focuses on the development of security best practices and a mesh framework with an open-source, multipoint-to-multipoint virtual private network (VPN) that can tie Linux, Windows, IOS., and Android devices into one secure fabric, with heterogeneous mobile robotic platforms running ROSPY in a secure cloud robotics infrastructure.