STARSS

group_project

Visible to the public STARSS: Small: SecureDust - The Physical Limits of Information Security

Truly ubiquitous computing with very small, self-powered and wirelessly networked integrated circuits will become possible within a decade. Applications of these devices include biosensors, environmental monitors, and defense, all of which bring a need for security and privacy. Enabling the use of strong cryptographic algorithms on extremely constrained devices requires rethinking, from an energy-first perspective, the design and implementation of basic cryptographic building blocks.

group_project

Visible to the public STARSS: TTP Option: Small: A Quantum Approach to Hardware Security: from Theory to Optical Implementation

The problem of ensuring that computer hardware is not surreptitiously malicious is a growing concern. The case of random number generators (RNGs) is particularly important because random numbers are foundational to information security. All current solutions in practice require trusting the hardware, and are therefore vulnerable to hardware attacks. This project explores a quantum-based solution to hardware security by designing and implementing a new class of RNGs that can prove their own integrity to the user.

group_project

Visible to the public STARSS: Small: Trapdoor Computational Fuzzy Extractors

Fuzzy extractors convert biometric data into reproducible uniform random strings, and make it possible to apply cryptographic techniques for biometric security. They are used to encrypt and authenticate user data with keys derived from biometric inputs. This research investigates how hardware security primitives can have provable cryptographic properties, a connection which is largely lacking in currently available hardware primitives.

group_project

Visible to the public STARSS: Small: Collaborative: Specification and Verification for Secure Hardware

There is a growing need for techniques to detect security vulnerabilities in hardware and at the hardware-software interface. Such vulnerabilities arise from the use of untrusted supply chains for processors and system-on-chip components and from the scope for malicious agents to subvert a system by exploiting hardware defects arising from design errors, incomplete specifications, or maliciously inserted blocks.

group_project

Visible to the public SaTC: STARSS: Small: Property Driven Hardware Security

The task of designing modern hardware that is impervious to any and every security attack is almost impossible to achieve. It is extremely hard to ensure that these complex, multi-billion transistor systems are functionally correct, let alone secure. Thus, it should not be surprising that there are a large and growing number of attacks that target hardware vulnerabilities. The state of the art for hardware design security relies heavily on functional verification, manual inspection, and code review to identify security vulnerabilities.

group_project

Visible to the public STARSS: Small: Collaborative: Practical and Scalable Security Verification of Security-Aware Hardware Architectures

Computers form the backbone of any modern society, and often process large amounts of sensitive and private information. To help secure the software, and the sensitive data, a number of secure hardware-software and processor architectures have been proposed. These architectures incorporate novel protection and defense mechanisms directly in the hardware where they cannot be modified or bypassed, unlike software protections.

group_project

Visible to the public STARSS: Small: New Attack Vectors and Formal Security Analysis for Integrated Circuit Logic Obfuscation

Reverse engineering of integrated circuits (ICs) has become a major concern for semiconductor design companies since services to depackage, delayer and image an IC can be used to extract the underlying design. IP theft of this nature has not only economic impact due to IP theft, but also compromises the security of ICs used in military and critical infrastructure.

group_project

Visible to the public STARSS: Small: Collaborative: Zero-Power Dynamic Signature for Trust Verification of Passive Sensors and Tags

As passive tagging technologies like RFID become more economical and ubiquitous, it can be envisioned that in the future, millions of sensors integrated with these tags could become an integral part of the next generation of smart infrastructure and the overall concept of internet-of-things. As a result, securing these passive assets against data theft and counterfeiting would become a priority, reinforcing the importance of the proposed dynamic authentication techniques.

group_project

Visible to the public  STARSS: Small: Automatic Synthesis of Verifiably Secure Hardware Accelerators

Specialized hardware accelerators are growing in popularity across the computing spectrum from mobile devices to datacenters. These special-purpose hardware engines promise significant improvements in computing performance and energy efficiency that are essential to all aspects of modern society. However, hardware specialization also comes with added design complexity and introduces a host of new security challenges, which have not been adequately explored.

group_project

Visible to the public SaTC: STARSS: Small: Combined Side-channel Attacks and Mathematical Foundations of Combined Countermeasures

Digital information has become an integral part of our daily lives and there is a growing concern about the security of information. The amount of information that should be kept secure is increasing with the proliferation of high-tech electronics such as smart-phones, tablets, and wearable devices. Accordingly, the number of attacks from malicious parties to obtain the secret information that is stored in a secure (i.e., encrypted) device increases.