Biblio

Found 12046 results

Filters: Keyword is Resiliency  [Clear All Filters]
2017-05-19
Ho, Grant, Leung, Derek, Mishra, Pratyush, Hosseini, Ashkan, Song, Dawn, Wagner, David.  2016.  Smart Locks: Lessons for Securing Commodity Internet of Things Devices. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :461–472.

We examine the security of home smart locks: cyber-physical devices that replace traditional door locks with deadbolts that can be electronically controlled by mobile devices or the lock manufacturer's remote servers. We present two categories of attacks against smart locks and analyze the security of five commercially-available locks with respect to these attacks. Our security analysis reveals that flaws in the design, implementation, and interaction models of existing locks can be exploited by several classes of adversaries, allowing them to learn private information about users and gain unauthorized home access. To guide future development of smart locks and similar Internet of Things devices, we propose several defenses that mitigate the attacks we present. One of these defenses is a novel approach to securely and usably communicate a user's intended actions to smart locks, which we prototype and evaluate. Ultimately, our work takes a first step towards illuminating security challenges in the system design and novel functionality introduced by emerging IoT systems.

2017-09-19
Sivaraman, Vijay, Chan, Dominic, Earl, Dylan, Boreli, Roksana.  2016.  Smart-Phones Attacking Smart-Homes. Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :195–200.

The explosion in Internet-connected household devices, such as light-bulbs, smoke-alarms, power-switches, and webcams, is creating new vectors for attacking "smart-homes" at an unprecedented scale. Common perception is that smart-home IoT devices are protected from Internet attacks by the perimeter security offered by home routers. In this paper we demonstrate how an attacker can infiltrate the home network via a doctored smart-phone app. Unbeknownst to the user, this app scouts for vulnerable IoT devices within the home, reports them to an external entity, and modifies the firewall to allow the external entity to directly attack the IoT device. The ability to infiltrate smart-homes via doctored smart-phone apps demonstrates that home routers are poor protection against Internet attacks and highlights the need for increased security for IoT devices.

2017-09-05
Maiti, Anindya, Armbruster, Oscar, Jadliwala, Murtuza, He, Jibo.  2016.  Smartwatch-Based Keystroke Inference Attacks and Context-Aware Protection Mechanisms. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :795–806.

Wearable devices, such as smartwatches, are furnished with state-of-the-art sensors that enable a range of context-aware applications. However, malicious applications can misuse these sensors, if access is left unaudited. In this paper, we demonstrate how applications that have access to motion or inertial sensor data on a modern smartwatch can recover text typed on an external QWERTY keyboard. Due to the distinct nature of the perceptible motion sensor data, earlier research efforts on emanation based keystroke inference attacks are not readily applicable in this scenario. The proposed novel attack framework characterizes wrist movements (captured by the inertial sensors of the smartwatch worn on the wrist) observed during typing, based on the relative physical position of keys and the direction of transition between pairs of keys. Eavesdropped keystroke characteristics are then matched to candidate words in a dictionary. Multiple evaluations show that our keystroke inference framework has an alarmingly high classification accuracy and word recovery rate. With the information recovered from the wrist movements perceptible by a smartwatch, we exemplify the risks associated with unaudited access to seemingly innocuous sensors (e.g., accelerometers and gyroscopes) of wearable devices. As part of our efforts towards preventing such side-channel attacks, we also develop and evaluate a novel context-aware protection framework which can be used to automatically disable (or downgrade) access to motion sensors, whenever typing activity is detected.

Mohamed, Manar, Shrestha, Babins, Saxena, Nitesh.  2016.  SMASheD: Sniffing and Manipulating Android Sensor Data. Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. :152–159.

The current Android sensor security model either allows only restrictive read access to sensitive sensors (e.g., an app can only read its own touch data) or requires special install-time permissions (e.g., to read microphone, camera or GPS). Moreover, Android does not allow write access to any of the sensors. Sensing-based security applications therefore crucially rely upon the sanity of the Android sensor security model. In this paper, we show that such a model can be effectively circumvented. Specifically, we build SMASheD, a legitimate framework under the current Android ecosystem that can be used to stealthily sniff as well as manipulate many of the Android's restricted sensors (even touch input). SMASheD exploits the Android Debug Bridge (ADB) functionality and enables a malicious app with only the INTERNET permission to read, and write to, multiple different sensor data files at will. SMASheD is the first framework, to our knowledge, that can sniff and manipulate protected sensors on unrooted Android devices, without user awareness, without constant device-PC connection and without the need to infect the PC. The primary contributions of this work are two-fold. First, we design and develop the SMASheD framework. Second, as an offensive implication of the SMASheD framework, we introduce a wide array of potentially devastating attacks. Our attacks against the touchsensor range from accurately logging the touchscreen input (TouchLogger) to injecting touch events for accessing restricted sensors and resources, installing and granting special permissions to other malicious apps, accessing user accounts, and authenticating on behalf of the user –- essentially almost doing whatever the device user can do (secretively). Our attacks against various physical sensors (motion, position and environmental) can subvert the functionality provided by numerous existing sensing-based security applications, including those used for(continuous) authentication, and authorization.

2017-05-17
Bae, Kyungmin, Ölveczky, Peter Csaba, Kong, Soonho, Gao, Sicun, Clarke, Edmund M..  2016.  SMT-Based Analysis of Virtually Synchronous Distributed Hybrid Systems. Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control. :145–154.

This paper presents general techniques for verifying virtually synchronous distributed control systems with interconnected physical environments. Such cyber-physical systems (CPSs) are notoriously hard to verify, due to their combination of nontrivial continuous dynamics, network delays, imprecise local clocks, asynchronous communication, etc. To simplify their analysis, we first extend the PALS methodology–-that allows to abstract from the timing of events, asynchronous communication, network delays, and imprecise clocks, as long as the infrastructure guarantees bounds on the network delays and clock skews–-from real-time to hybrid systems. We prove a bisimulation equivalence between Hybrid PALS synchronous and asynchronous models. We then show how various verification problems for synchronous Hybrid PALS models can be reduced to SMT solving over nonlinear theories of the real numbers. We illustrate the Hybrid PALS modeling and verification methodology on a number of CPSs, including a control system for turning an airplane.

2017-05-19
Shoukry, Yasser, Chong, Michelle, Wakaiki, Masashi, Nuzzo, Pierluigi, Sangiovanni-Vincentelli, Alberto L., Seshia, Sanjit A., Hespanha, João P., Tabuada, Paulo.  2016.  SMT-based Observer Design for Cyber-physical Systems Under Sensor Attacks. Proceedings of the 7th International Conference on Cyber-Physical Systems. :29:1–29:10.

We introduce a scalable observer architecture to estimate the states of a discrete-time linear-time-invariant (LTI) system whose sensors can be manipulated by an attacker. Given the maximum number of attacked sensors, we build on previous results on necessary and sufficient conditions for state estimation, and propose a novel multi-modal Luenberger (MML) observer based on efficient Satisfiability Modulo Theory (SMT) solving. We present two techniques to reduce the complexity of the estimation problem. As a first strategy, instead of a bank of distinct observers, we use a family of filters sharing a single dynamical equation for the states, but different output equations, to generate estimates corresponding to different subsets of sensors. Such an architecture can reduce the memory usage of the observer from an exponential to a linear function of the number of sensors. We then develop an efficient SMT-based decision procedure that is able to reason about the estimates of the MML observer to detect at runtime which sets of sensors are attack-free, and use them to obtain a correct state estimate. We provide proofs of convergence for our algorithm and report simulation results to compare its runtime performance with alternative techniques. Our algorithm scales well for large systems (including up to 5000 sensors) for which many previously proposed algorithms are not implementable due to excessive memory and time requirements. Finally, we illustrate the effectiveness of our algorithm on the design of resilient power distribution systems.

2017-09-05
Nelson, Jennifer, Lin, X., Chen, C., Iglesias, J., Li, J. J..  2016.  Social Engineering for Security Attacks. Proceedings of the The 3rd Multidisciplinary International Social Networks Conference on SocialInformatics 2016, Data Science 2016. :6:1–6:4.

Social Engineering is a kind of advance persistent threat (APT) that gains private and sensitive information through social networks or other types of communication. The attackers can use social engineering to obtain access into social network accounts and stays there undetected for a long period of time. The purpose of the attack is to steal sensitive data and spread false information rather than to cause direct damage. Such targets can include Facebook accounts of government agencies, corporations, schools or high-profile users. We propose to use IDS, Intrusion Detection System, to battle such attacks. What the social engineering does is try to gain easy access, so that the attacks can be repeated and ongoing. The focus of this study is to find out how this type of attacks are carried out so that they can properly detected by IDS in future research.

2017-05-18
Flores, Huber, Sharma, Rajesh, Ferreira, Denzil, Luo, Chu, Kostakos, Vassilis, Tarkoma, Sasu, Hui, Pan, Li, Yong.  2016.  Social-aware Device-to-device Communication: A Contribution for Edge and Fog Computing? Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. :1466–1471.

The exploitation of the opportunistic infrastructure via Device-to-Device (D2D) communication is a critical component towards the adoption of new paradigms such as edge and fog computing. While a lot of work has demonstrated the great potential of D2D communication, it is still unclear whether the benefits of the D2D approach can really be leveraged in practice. In this paper, we develop a software sensor, namely Detector, which senses the infrastructure in proximity of a mobile user. We analyze and evaluate D2D on the wild, i.e., not in simulations. We found that in a realistic environment, a mobile is always co-located in proximity to at least one other mobile device throughout the day. This suggests that a device can schedule tasks processing in coordination with other devices, potentially more powerful, instead of handling the processing of the tasks by itself.

2017-05-22
Ceccato, Mariano, Nguyen, Cu D., Appelt, Dennis, Briand, Lionel C..  2016.  SOFIA: An Automated Security Oracle for Black-box Testing of SQL-injection Vulnerabilities. Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering. :167–177.

Security testing is a pivotal activity in engineering secure software. It consists of two phases: generating attack inputs to test the system, and assessing whether test executions expose any vulnerabilities. The latter phase is known as the security oracle problem. In this work, we present SOFIA, a Security Oracle for SQL-Injection Vulnerabilities. SOFIA is programming-language and source-code independent, and can be used with various attack generation tools. Moreover, because it does not rely on known attacks for learning, SOFIA is meant to also detect types of SQLi attacks that might be unknown at learning time. The oracle challenge is recast as a one-class classification problem where we learn to characterise legitimate SQL statements to accurately distinguish them from SQLi attack statements. We have carried out an experimental validation on six applications, among which two are large and widely-used. SOFIA was used to detect real SQLi vulnerabilities with inputs generated by three attack generation tools. The obtained results show that SOFIA is computationally fast and achieves a recall rate of 100% (i.e., missing no attacks) with a low false positive rate (0.6%).

2017-09-05
Gunathilaka, Prageeth, Mashima, Daisuke, Chen, Binbin.  2016.  SoftGrid: A Software-based Smart Grid Testbed for Evaluating Substation Cybersecurity Solutions. Proceedings of the 2Nd ACM Workshop on Cyber-Physical Systems Security and Privacy. :113–124.

Electrical substations are crucial for power grids. A number of international standards, such as IEC 60870 and 61850, have emerged to enable remote and automated control over substations. However, owing to insufficient security consideration in their design and implementation, the resulting systems could be vulnerable to cyber attacks. As a result, the modernization of a large number of substations dramatically increases the scale of potential damage successful attacks can cause on power grids. To counter such a risk, one promising direction is to design and deploy an additional layer of defense at the substations. However, it remains a challenge to evaluate various substation cybersecurity solutions in a realistic environment. In this paper, we present the design and implementation of SoftGrid, a software-based smart grid testbed for evaluating the effectiveness, performance, and interoperability of various security solutions implemented to protect the remote control interface of substations. We demonstrate the capability and usefulness of SoftGrid through a concrete case study. We plan to open-source SoftGrid to facilitate security research in related areas.

2017-05-22
Potteiger, Bradley, Martins, Goncalo, Koutsoukos, Xenofon.  2016.  Software and Attack Centric Integrated Threat Modeling for Quantitative Risk Assessment. Proceedings of the Symposium and Bootcamp on the Science of Security. :99–108.

One step involved in the security engineering process is threat modeling. Threat modeling involves understanding the complexity of the system and identifying all of the possible threats, regardless of whether or not they can be exploited. Proper identification of threats and appropriate selection of countermeasures reduces the ability of attackers to misuse the system. This paper presents a quantitative, integrated threat modeling approach that merges software and attack centric threat modeling techniques. The threat model is composed of a system model representing the physical and network infrastructure layout, as well as a component model illustrating component specific threats. Component attack trees allow for modeling specific component contained attack vectors, while system attack graphs illustrate multi-component, multi-step attack vectors across the system. The Common Vulnerability Scoring System (CVSS) is leveraged to provide a standardized method of quantifying the low level vulnerabilities in the attack trees. As a case study, a railway communication network is used, and the respective results using a threat modeling software tool are presented.

2017-08-22
Gao, Yan, Yang, Chunhui.  2016.  Software Defect Prediction Based on Manifold Learning in Subspace Selection. Proceedings of the 2016 International Conference on Intelligent Information Processing. :17:1–17:6.

Software defects will lead to software running error and system crashes. In order to detect software defect as early as possible at early stage of software development, a series of machine learning approaches have been studied and applied to predict defects in software modules. Unfortunately, the imbalanceof software defect datasets brings great challenge to software defect prediction model training. In this paper, a new manifold learning based subspace learning algorithm, Discriminative Locality Alignment(DLA), is introduced into software defects prediction. Experimental results demonstrate that DLA is consistently superior to LDA (Linear Discriminant Analysis) and PCA (Principal Component Analysis) in terms of discriminate information extraction and prediction performance. In addition, DLA reveals some attractive intrinsic properties for numeric calculation, e.g. it can overcome the matrix singular problem and small sample size problem in software defect prediction.

Rahman, Md. Habibur, Sharmin, Sadia, Sarwar, Sheikh Muhammad, Shoyaib, Mohammad.  2016.  Software Defect Prediction Using Feature Space Transformation. Proceedings of the International Conference on Internet of Things and Cloud Computing. :72:1–72:6.

In software quality estimation research, software defect prediction is a key topic. A defect prediction model is generally constructed using a variety of software attributes and each attribute may have positive, negative or neutral effect on a specific model. Selection of an optimal set of attributes for model development remains a vital yet unexplored issue. In this paper, we have introduced a new feature space transformation process with a normalization technique to improve the defect prediction accuracy. We proposed a feature space transformation technique and classify the instances using Support Vector Machine (SVM) with its histogram intersection kernel. The proposed method is evaluated using the data sets from NASA metric data repository and its application demonstrates acceptable accuracy.

2017-06-05
Zhang, Dajun, Yu, Fei Richard, Wei, Zhexiong, Boukerche, Azzedine.  2016.  Software-defined Vehicular Ad Hoc Networks with Trust Management. Proceedings of the 6th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications. :41–49.

With the rising interest of expedient, safe, and high-efficient transportation, vehicular ad hoc networks (VANETs) have turned into a critical technology in smart transportation systems. Because of the high mobility of nodes, VANETs are vulnerable to security attacks. In this paper, we propose a novel framework of software-defined VANETs with trust management. Specifically, we separate the forwarding plane in VANETs from the control plane, which is responsible for the control functionality, such as routing protocols and trust management in VANETs. Using the on-demand distance vector routing (TAODV) protocol as an example, we present a routing protocol named software-defined trust based ad hoc on-demand distance vector routing (SD-TAODV). Simulation results are presented to show the effectiveness of the proposed software-defined VANETs with trust management.

2017-05-17
Ouaknine, Joel, Pouly, Amaury, Sousa-Pinto, Joao, Worrell, James.  2016.  Solvability of Matrix-Exponential Equations. Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science. :798–806.

We consider a continuous analogue of (Babai et al. 1996)'s and (Cai et al. 2000)'s problem of solving multiplicative matrix equations. Given k + 1 square matrices A1, ..., Ak, C, all of the same dimension, whose entries are real algebraic, we examine the problem of deciding whether there exist non-negative reals t1, ..., tk such that We show that this problem is undecidable in general, but decidable under the assumption that the matrices A1, ..., Ak commute. Our results have applications to reachability problems for linear hybrid automata. Our decidability proof relies on a number of theorems from algebraic and transcendental number theory, most notably those of Baker, Kronecker, Lindemann, and Masser, as well as some useful geometric and linear-algebraic results, including the Minkowski-Weyl theorem and a new (to the best of our knowledge) result about the uniqueness of strictly upper triangular matrix logarithms of upper unitriangular matrices. On the other hand, our undecidability result is shown by reduction from Hilbert's Tenth Problem.

Saab, Farah, Kayssi, Ayman, Elhajj, Imad, Chehab, Ali.  2016.  Solving Sybil Attacks Using Evolutionary Game Theory. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :2195–2201.

Recommender systems have become quite popular recently. However, such systems are vulnerable to several types of attacks that target user ratings. One such attack is the Sybil attack where an entity masquerades as several identities with the intention of diverting user ratings. In this work, we propose evolutionary game theory as a possible solution to the Sybil attack in recommender systems. After modeling the attack, we use replicator dynamics to solve for evolutionary stable strategies. Our results show that under certain conditions that are easily achievable by a system administrator, the probability of an attack strategy drops to zero implying degraded fitness for Sybil nodes that eventually die out.

2017-06-05
Liu, Bingyang, Bi, Jun, Zhou, Yu.  2016.  Source Address Validation in Software Defined Networks. Proceedings of the 2016 ACM SIGCOMM Conference. :595–596.

In this paper, we present the preliminary design and implementation of SDN-SAVI, an SDN application that enables SAVI functionalities in SDN networks. In this proposal, all the functionalities are implemented on the controller without modifying SDN switches. To enforce SAVI on packets in the data plane, the controller installs binding tables in switches using existing SDN techniques, such as OpenFlow. With SDN-SAVI, a network administrator can now enforce SAVI in her network by merely integrating a module on the controller, rather than purchasing SAVI-capable switches and replacing legacy ones.

2017-05-30
Wu, Garfield Zhiping, Tompa, Frank Wm..  2016.  A Space-Efficient Data Structure for Fast Access Control in ECM Systems. Proceedings of the 21st ACM on Symposium on Access Control Models and Technologies. :191–201.

An Enterprise Content Management (ECM) system must withstand many queries to its access control subsystem in order to check permissions in support of browsing-oriented operations. This leads us to choose a subject-oriented representation for access control (i.e., maintaining a permissions list for each subject). Additionally, if identifiers (OIDs) are assigned to objects in a breadth-first traversal of the object hierarchy, we will encounter many contiguous OIDs when browsing under one object (e.g., folder). Based on these observations, we present a space-efficient data structure specifically tailored for representing permissions lists in ECM systems. In addition to achieving space efficiency, the operations to check, grant, or revoke a permission are very fast using our data structure. Furthermore, our design supports fast union and intersection of two or more permissions lists (determining the effective permissions inherited from several users' groups or the common permissions among sets of users). Finally, the data structure is scalable to support any increase in the number of objects and subjects. We evaluate our design by comparing it against a compressed (WAH) bitmap-based representation and a hashing-based representation, using both synthetic and real-world data under both random and breadth-first OID numbering schemes.

2017-06-27
Luboschik, Martin, Berger, Philip, Staadt, Oliver.  2016.  On Spatial Perception Issues In Augmented Reality Based Immersive Analytics. Proceedings of the 2016 ACM Companion on Interactive Surfaces and Spaces. :47–53.

Beyond other domains, the field of immersive analytics makes use of Augmented Reality techniques to successfully support users in analyzing data. When displaying ubiquitous data integrated into the everyday life, spatial immersion issues like depth perception, data localization and object relations become relevant. Although there is a variety of techniques to deal with those, they are difficult to apply if the examined data or the reference space are large and abstract. In this work, we discuss observed problems in such immersive analytics systems and the applicability of current countermeasures to identify needs for action.

2017-08-02
Asghar, Hassan Jameel, Melis, Luca, Soldani, Cyril, De Cristofaro, Emiliano, Kaafar, Mohamed Ali, Mathy, Laurent.  2016.  SplitBox: Toward Efficient Private Network Function Virtualization. Proceedings of the 2016 Workshop on Hot Topics in Middleboxes and Network Function Virtualization. :7–13.

This paper presents SplitBox, an efficient system for privacy-preserving processing of network functions that are outsourced as software processes to the cloud. Specifically, cloud providers processing the network functions do not learn the network policies instructing how the functions are to be processed. First, we propose an abstract model of a generic network function based on match-action pairs. We assume that this function is processed in a distributed manner by multiple honest-but-curious cloud service providers. Then, we introduce our SplitBox system for private network function virtualization and present a proof-of-concept implementation on FastClick, an extension of the Click modular router, using a firewall as a use case. Our experimental results achieve a throughput of over 2 Gbps with 1 kB-sized packets on average, traversing up to 60 firewall rules.

2017-09-19
Asghar, Hassan Jameel, Melis, Luca, Soldani, Cyril, De Cristofaro, Emiliano, Kaafar, Mohamed Ali, Mathy, Laurent.  2016.  SplitBox: Toward Efficient Private Network Function Virtualization. Proceedings of the 2016 Workshop on Hot Topics in Middleboxes and Network Function Virtualization. :7–13.

This paper presents SplitBox, an efficient system for privacy-preserving processing of network functions that are outsourced as software processes to the cloud. Specifically, cloud providers processing the network functions do not learn the network policies instructing how the functions are to be processed. First, we propose an abstract model of a generic network function based on match-action pairs. We assume that this function is processed in a distributed manner by multiple honest-but-curious cloud service providers. Then, we introduce our SplitBox system for private network function virtualization and present a proof-of-concept implementation on FastClick, an extension of the Click modular router, using a firewall as a use case. Our experimental results achieve a throughput of over 2 Gbps with 1 kB-sized packets on average, traversing up to 60 firewall rules.

2017-10-18
Ranganathan, Aanjhan, Ólafsdóttir, Hildur, Capkun, Srdjan.  2016.  SPREE: A Spoofing Resistant GPS Receiver. Proceedings of the 22Nd Annual International Conference on Mobile Computing and Networking. :348–360.

Global Positioning System (GPS) is used ubiquitously in a wide variety of applications ranging from navigation and tracking to modern smart grids and communication networks. However, it has been demonstrated that modern GPS receivers are vulnerable to signal spoofing attacks. For example, today it is possible to change the course of a ship or force a drone to land in a hostile area by simply spoofing GPS signals. Several countermeasures have been proposed in the past to detect GPS spoofing attacks. These counter-measures offer protection only against naive attackers. They are incapable of detecting strong attackers such as those capable of seamlessly taking over a GPS receiver, which is currently receiving legitimate satellite signals, and spoofing them to an arbitrary location. Also, there is no hardware platform that can be used to compare and evaluate the effectiveness of existing countermeasures in real-world scenarios. In this work, we present SPREE, which is, to the best of our knowledge, the first GPS receiver capable of detecting all spoofing attacks described in the literature. Our novel spoofing detection technique called auxiliary peak tracking enables detection of even a strong attacker capable of executing the seamless takeover attack. We implement and evaluate our receiver against three different sets of GPS signal traces: (i) a public repository of spoofing traces, (ii) signals collected through our own wardriving effort and (iii) using commercial GPS signal generators. Our evaluations show that SPREE constraints even a strong attacker (capable of seamless takeover attack) from spoofing the receiver to a location not more than 1 km away from its true location. This is a significant improvement over modern GPS receivers that can be spoofed to any arbitrary location. Finally, we release our implementation and datasets to the community for further research and development.

2017-09-05
Iakovakis, Dimitrios, Hadjileontiadis, Leontios.  2016.  Standing Hypotension Prediction Based on Smartwatch Heart Rate Variability Data: A Novel Approach. Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct. :1109–1112.

The number of wearable and smart devices which are connecting every day in the Internet of Things (IoT) is continuously growing. We have a great opportunity though to improve the quality of life (QoL) standards by adding medical value to these devices. Especially, by exploiting IoT technology, we have the potential to create useful tools which utilize the sensors to provide biometric data. This novel study aims to use a smartwatch, independent from other hardware, to predict the Blood Pressure (BP) drop caused by postural changes. In cases that the drop is due to orthostatic hypotension (OH) can cause dizziness or even faint factors, which increase the risk of fall in the elderly but, as well as, in younger groups of people. A mathematical prediction model is proposed here which can reduce the risk of fall due to OH by sensing heart rate variability (data and drops in systolic BP after standing in a healthy group of 10 subjects. The experimental results justify the efficiency of the model, as it can perform correct prediction in 86.7% of the cases, and are encouraging enough for extending the proposed approach to pathological cases, such as patients with Parkinson's disease, involving large scale experiments.

2017-09-15
Alley, Joseph, Pieprzyk, Josef.  2016.  State Recovery Attacks Against \$\textbackslashpi\$-cipher. Proceedings of the Australasian Computer Science Week Multiconference. :43:1–43:6.

π-Cipher is one of the twenty-nine candidates in the second round of the CAESAR competition for authenticated ciphers. π-Cipher uses a parallel sponge construction, based upon an ARX permutation. This work shows several state recovery attacks, on up to three rounds. These attacks use known values in the function's bitrate, combined with values found through exhaustive search, to retrieve the remaining values in the internal state. These attacks can break one round, for any variant of π-Cipher, in negligible time. They can also break two or three rounds much faster than exhaustive search on the key, for some variants. However, these attacks only work against version 1 of π-Cipher, due to the differences in the padding function for version 2.0. To fill this gap, this work also includes a one round attack against version 2.0, building upon the distinguisher present in the π-Cipher submission document.

2017-04-03
Han, Wonkyu, Hu, Hongxin, Zhao, Ziming, Doupé, Adam, Ahn, Gail-Joon, Wang, Kuang-Ching, Deng, Juan.  2016.  State-aware Network Access Management for Software-Defined Networks. Proceedings of the 21st ACM on Symposium on Access Control Models and Technologies. :1–11.

OpenFlow, as the prevailing technique for Software-Defined Networks (SDNs), introduces significant programmability, granularity, and flexibility for many network applications to effectively manage and process network flows. However, because OpenFlow attempts to keep the SDN data plane simple and efficient, it focuses solely on L2/L3 network transport and consequently lacks the fundamental ability of stateful forwarding for the data plane. Also, OpenFlow provides a very limited access to connection-level information in the SDN controller. In particular, for any network access management applications on SDNs that require comprehensive network state information, these inherent limitations of OpenFlow pose significant challenges in supporting network services. To address these challenges, we propose an innovative connection tracking framework called STATEMON that introduces a global state-awareness to provide better access control in SDNs. STATEMON is based on a lightweight extension of OpenFlow for programming the stateful SDN data plane, while keeping the underlying network devices as simple as possible. To demonstrate the practicality and feasibility of STATEMON, we implement and evaluate a stateful network firewall and port knocking applications for SDNs, using the APIs provided by STATEMON. Our evaluations show that STATEMON introduces minimal message exchanges for monitoring active connections in SDNs with manageable overhead (3.27% throughput degradation).