Biblio
Filters: Keyword is Wireless communication [Clear All Filters]
Identifying NAT Devices to Detect Shadow IT: A Machine Learning Approach. 2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA). :1—7.
.
2021. Network Address Translation (NAT) is an address remapping technique placed at the borders of stub domains. It is present in almost all routers and CPEs. Most NAT devices implement Port Address Translation (PAT), which allows the mapping of multiple private IP addresses to one public IP address. Based on port number information, PAT matches the incoming traffic to the corresponding "hidden" client. In an enterprise context, and with the proliferation of unauthorized wired and wireless NAT routers, NAT can be used for re-distributing an Intranet or Internet connection or for deploying hidden devices that are not visible to the enterprise IT or under its oversight, thus causing a problem known as shadow IT. Thus, it is important to detect NAT devices in an intranet to prevent this particular problem. Previous methods in identifying NAT behavior were based on features extracted from traffic traces per flow. In this paper, we propose a method to identify NAT devices using a machine learning approach from aggregated flow features. The approach uses multiple statistical features in addition to source and destination IPs and port numbers, extracted from passively collected traffic data. We also use aggregated features extracted within multiple window sizes and feed them to a machine learning classifier to study the effect of timing on NAT detection. Our approach works completely passively and achieves an accuracy of 96.9% when all features are utilized.
Secrecy Performance Analysis in Internet of Satellites: Physical Layer Security Perspective. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :1185–1189.
.
2020. As the latest evolving architecture of space networks, Internet of Satellites (IoSat) is regarded as a promising paradigm in the future beyond 5G and 6G wireless systems. However, due to the extremely large number of satellites and open links, it is challenging to ensure communication security in IoSat, especially for wiretap resisting. To the best of our knowledge, it is an entirely new problem to study the security issue in IoSat, since existing works concerning physical layer security (PLS) in satellite networks mainly focused on the space-to-terrestrial links. It is also noted that, we are the first to investigate PLS problem in IoSat. In light of this, we present in this paper an analytical model of PLS in IoSat where a terrestrial transmitter delivers its information to multi-satellite in the presence of eavesdroppers. By adopting the key parameters such as satellites' deployment density, minimum elevation angle, and orbit height, two major secrecy metric including average secrecy capacity and probability are derived and analyzed. As demonstrated by extensive numerical results, the presented theoretical framework can be utilized to efficiently evaluate the secrecy performance of IoSat, and guide the design and optimization for communication security in such systems.
Keep Private Networks Private: Secure Channel-PUFs, and Physical Layer Security by Linear Regression Enhanced Channel Profiles. 2020 3rd International Conference on Data Intelligence and Security (ICDIS). :93–100.
.
2020. In the context of a rapidly changing and increasingly complex (industrial) production landscape, securing the (communication) infrastructure is becoming an ever more important but also more challenging task - accompanied by the application of radio communication. A worthwhile and promising approach to overcome the arising attack vectors, and to keep private networks private, are Physical Layer Security (PhySec) implementations. The paper focuses on the transfer of the IEEE802.11 (WLAN) PhySec - Secret Key Generation (SKG) algorithms to Next Generation Mobile Networks (NGMNs), as they are the driving forces and key enabler of future industrial networks. Based on a real world Long Term Evolution (LTE) testbed, improvements of the SKG algorithms are validated. The paper presents and evaluates significant improvements in the establishment of channel profiles, whereby especially the Bit Disagreement Rate (BDR) can be improved substantially. The combination of the Discrete Cosine Transformation (DCT) and the supervised Machine Learning (ML) algorithm - Linear Regression (LR) - provides outstanding results, which can be used beyond the SKG application. The evaluation also emphasizes the appropriateness of PhySec for securing private networks.
A Game-Theoretic Approach for Probabilistic Cooperative Jamming Strategies over Parallel Wireless Channels. 2021 IEEE Conference on Communications and Network Security (CNS). :47–55.
.
2021. Considered is a network of parallel wireless channels in which individual parties are engaged in secret communication under the protection of cooperative jamming. A strategic eavesdropper selects the most vulnerable channels to attack. Existing works usually suggest the defender allocate limited cooperative jamming power to various channels. However, it usually requires some strong assumptions and complex computation to find such an optimal power control policy. This paper proposes a probabilistic cooperative jamming scheme such that the defender focuses on protecting randomly selected channels. Two different cases regarding each channel’s eavesdropping capacity are discussed. The first case studies the general scenario where each channel has different eavesdropping capacity. The second case analyzes an extreme scenario where all channels have the same eavesdropping capacity. Two non-zero-sum Nash games model the competition between the network defender and an eavesdropper in each case. Furthermore, considering the case that the defender does not know the eavesdropper’s channel state information (CSI) leads to a Bayesian game. For all three games, we derive conditions for the existence of a unique Nash equilibrium (NE), and obtain the equilibria and the value functions in closed form.
Privacy Preserved Secure Offloading in the Multi-access Edge Computing Network. 2021 IEEE Wireless Communications and Networking Conference Workshops (WCNCW). :1–6.
.
2021. Mobile edge computing (MEC) emerges recently to help process the computation-intensive and delay-sensitive applications of resource limited mobile devices in support of MEC servers. Due to the wireless offloading, MEC faces many security challenges, like eavesdropping and privacy leakage. The anti-eavesdropping offloading or privacy preserving offloading have been studied in existing researches. However, both eavesdropping and privacy leakage may happen in the meantime in practice. In this paper, we propose a privacy preserved secure offloading scheme aiming to minimize the energy consumption, where the location privacy, usage pattern privacy and secure transmission against the eavesdropper are jointly considered. We formulate this problem as a constrained Markov decision process (CMDP) with the constraints of secure offloading rate and pre-specified privacy level, and solve it with reinforcement learning (RL). It can be concluded from the simulation that this scheme can save the energy consumption as well as improve the privacy level and security of the mobile device compared with the benchmark scheme.
A robust fixed path-based routing scheme for protecting the source location privacy in WSNs. 2021 17th International Conference on Mobility, Sensing and Networking (MSN). :48–55.
.
2021. With the development of wireless sensor networks (WSNs), WSNs have been widely used in various fields such as animal habitat detection, military surveillance, etc. This paper focuses on protecting the source location privacy (SLP) in WSNs. Existing algorithms perform poorly in non-uniform networks which are common in reality. In order to address the performance degradation problem of existing algorithms in non-uniform networks, this paper proposes a robust fixed path-based random routing scheme (RFRR), which guarantees the path diversity with certainty in non-uniform networks. In RFRR, the data packets are sent by selecting a routing path that is highly differentiated from each other, which effectively protects SLP and resists the backtracking attack. The experimental results show that RFRR increases the difficulty of the backtracking attack while safekeeping the balance between security and energy consumption.
Enhancing Source-Location Privacy in IoT Wireless Sensor Networks Routing. 2021 IEEE 4th International Conference on Computer and Communication Engineering Technology (CCET). :376–381.
.
2021. Wireless Sensor Networks (WSNs) and their implementations have been the subject of numerous studies over the last two decades. WSN gathers, processes, and distributes wireless data to the database storage center. This study aims to explain the four main components of sensor nodes and the mechanism of WSN's. WSNs have 5 available types that will be discussed and explained in this paper. In addition to that, shortest path routing will be thoroughly analyzed. In “The Protocol”. Reconfigurable logic applications have grown in number and complexity. Shortest path routing is a method of finding paths through a network with the least distance or other cost metric. The efficiency of the shortest path protocol mechanism and the reliability of encryption are both present which adds security and accuracy of location privacy and message delivery. There are different forms of key management, such as symmetric and asymmetric encryption, each with its own set of processing techniques. The use of encryption technique to secure sensor nodes is addressed, as well as how we overcame the problem with the aid of advanced techniques. Our major findings are that adding more security doesn't cost much and by cost we mean energy consumption, throughput and latency.
Privacy-Preserving Proximity Detection Framework for Location-Based Services. 2021 International Conference on Networking and Network Applications (NaNA). :99–106.
.
2021. With the popularization of mobile communication and sensing equipment, as well as the rapid development of location-aware technology and wireless communication technology, LBSs(Location-based services) bring convenience to people’s lives and enable people to arrange activities more efficiently and reasonably. It can provide more flexible LBS proximity detection query, which has attracted widespread attention in recent years. However, the development of proximity detection query still faces many severe challenges including query information privacy. For example, when users want to ensure their location privacy and data security, they can get more secure location-based services. In this article, we propose an efficient and privacy-protecting proximity detection framework based on location services: PD(Proximity Detection). Through PD, users can query the range of arbitrary polygons and obtain accurate LBS results. Specifically, based on homomorphic encryption technology, an efficient PRQ(polygon range query) algorithm is constructed. With the help of PRQ, PD, you can obtain accurate polygon range query results through the encryption request and the services provided by the LAS(LBS Agent Server) and the CS(Cloud Server). In addition, the query privacy of the queryer and the information of the data provider are protected. The correctness proof and performance analysis show that the scheme is safe and feasible. Therefore, our scheme is suitable for many practical applications.
Privacy-Aware Ant Routing for Wireless Multimedia Sensor Networks in Healthcare. 2021 IEEE 22nd International Conference on High Performance Switching and Routing (HPSR). :1–6.
.
2021. The problem of maintaining the privacy of sensitive healthcare data is crucial yet the significance of research efforts achieved still need robust development in privacy protection techniques for Wireless Multimedia Sensor Networks (WMSNs). This paper aims to investigate different privacy-preserving methods for WMSNs that can be applied in healthcare, to guarantee a privacy-aware transmission of multimedia data between sensors and base stations. The combination of ant colony optimization-based routing and hierarchical structure of the network have been proposed in the AntSensNet WMSN-based routing protocol to offer QoS and power efficient multipath multimedia packet scheduling. In this paper, the AntSensNet routing protocol was extended by utilizing privacy-preserving mechanisms thus achieving anonymity / pseudonymity, unlinkability, and location privacy. The vulnerability of standard AntSensNet routing protocol to privacy threats have raised the need for the following privacy attacks’ countermeasures: (i) injection of fake traffic, which achieved anonymity, privacy of source and base locations, as well as unlinkability; (ii) encrypting and correlating the size of scalar and multimedia data which is transmitted through a WMSN, along with encrypting and correlating the size of ants, to achieve unlinkability and location privacy; (iii) pseudonyms to achieve unlinkability. The impact of these countermeasures is assessed using quantitative performance analysis conducted through simulation to gauge the overhead of the added privacy countermeasures. It can be concluded that the introduced modifications did enhance the privacy but with a penalty of increased delay and multimedia jitter. The health condition of a patient determines the vitals to be monitored which affects the volumes and sources of fake traffic. Consequently, desired privacy level will dictate incurred overhead due to multimedia transmissions and privacy measures.
IO-Link Wireless Device Cryptographic Performance and Energy Efficiency. 2021 22nd IEEE International Conference on Industrial Technology (ICIT). 1:1106–1112.
.
2021. In the context of the Industry 4.0 initiative, Cyber-Physical Production Systems (CPPS) or Cyber Manufacturing Systems (CMS) can be characterized as advanced networked mechatronic production systems gaining their added value by interaction with different systems using advanced communication technologies. Appropriate wired and wireless communication technologies and standards need to add timing in combination with security concepts to realize the potential improvements in the production process. One of these standards is IO-Link Wireless, which is used for sensor/actuator network operation. In this paper cryptographic performance and energy efficiency of an IO-Link Wireless Device are analyzed. The power consumption and the influence of the cryptographic operations on the trans-mission timing of the IO-Link Wireless protocol are exemplary measured employing a Phytec module based on a CC2650 system-on-chip (SoC) radio transceiver [2]. Confidentiality is considered in combination with the cryptographic performance as well as the energy efficiency. Different cryptographic algorithms are evaluated using the on chip hardware accelerator compared to a cryptographic software implementation.
An Energy-saving Approach for Error control Codes in Wireless Sensor Networks. 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC). :313—316.
.
2021. Wireless Sensor Networks (WSNs) have limited energy resource which requires authentic data transmission at a minimum cost. The major challenge is to deploy WSN with limited energy and lifetime of nodes while taking care of secure data communication. The transmission of data from the wireless channels may cause many losses such as fading, noise, bit error rate increases as well as deplete the energy resource from the nodes. To reduce the adverse effects of losses and to save power usage, error control coding (ECC) techniques are widely used and it also brings coding gain. Since WSN have limited energy resource so the selection of ECC is very difficult as both power consumption, as well as BER, has also taken into consideration. This research paper reviews different types of models, their applications, limitations of the sensor networks, and what are different types of future works going to overcome the limitations.
Rate Adaptive Reconciliation Based on Reed-Solomon Codes. 2021 6th International Conference on Communication, Image and Signal Processing (CCISP). :245—249.
.
2021. Security of physical layer key generation is based on the randomness and reciprocity of wireless fading channel, which has attracted more and more attention in recent years. This paper proposes a rate adaptive key agreement scheme and utilizes the received signal strength (RSS) of the channel between two wireless devices to generate the key. In conventional information reconciliation process, the bit inconsistency rate is usually eliminated by using the filter method, which increases the possibility of exposing the generated key bit string. Building on the strengths of existing secret key extraction approaches, this paper develops a scheme that uses Reed-Solomon (RS) codes, one of forward error correction channel codes, for information reconciliation. Owing to strong error correction performance of RS codes, the proposed scheme can solve the problem of inconsistent key bit string in the process of channel sensing. At the same time, the composition of RS codes can help the scheme realize rate adaptation well due to the construction principle of error correction code, which can freely control the code rate and achieve the reconciliation method of different key bit string length. Through experiments, we find that when the number of inconsistent key bits is not greater than the maximum error correction number of RS codes, it can well meet the purpose of reconciliation.
Comprehensive Study of Moving from Grid and Cloud Computing Through Fog and Edge Computing towards Dew Computing. 2021 4th International Iraqi Conference on Engineering Technology and Their Applications (IICETA). :68—74.
.
2021. Dew Computing (DC) is a comparatively modern field with a wide range of applications. By examining how technological advances such as fog, edge and Dew computing, and distributed intelligence force us to reconsider traditional Cloud Computing (CC) to serve the Internet of Things. A new dew estimation theory is presented in this article. The revised definition is as follows: DC is a software and hardware cloud-based company. On-premises servers provide autonomy and collaborate with cloud networks. Dew Calculation aims to enhance the capabilities of on-premises and cloud-based applications. These categories can result in the development of new applications. In the world, there has been rapid growth in Information and Communication Technology (ICT), starting with Grid Computing (GC), CC, Fog Computing (FC), and the latest Edge Computing (EC) technology. DC technologies, infrastructure, and applications are described. We’ll go through the newest developments in fog networking, QoE, cloud at the edge, platforms, security, and privacy. The dew-cloud architecture is an option concerning the current client-server architecture, where two servers are located at opposite ends. In the absence of an Internet connection, a dew server helps users browse and track their details. Data are primarily stored as a local copy on the dew server that starts the Internet and is synchronized with the cloud master copy. The local dew pages, a local online version of the current website, can be browsed, read, written, or added to the users. Mapping between different Local Dew sites has been made possible using the dew domain name scheme and dew domain redirection.
Specific Emitter Identification via Variational Mode Decomposition and Histogram of Oriented Gradient. 2021 28th International Conference on Telecommunications (ICT). :1—6.
.
2021. Specific emitter identification (SEI) is a physical-layer-based approach for enhancing wireless communication network security. A well-done SEI method can be widely applied in identifying the individual wireless communication device. In this paper, we propose a novel specific emitter identification method based on variational mode decomposition and histogram of oriented gradient (VMD-HOG). The signal is decomposed into specific temporal modes via VMD and HOG features are obtained from the time-frequency spectrum of temporal modes. The performance of the proposed method is evaluated both in single hop and relaying scenarios and under three channels with the number of emitters varying. Results depict that our proposed method provides great identification performance for both simulated signals and realistic data of Zigbee devices and outperforms the two existing methods in identification accuracy and computational complexity.
Frequency Reconfigurable Microstrip Bandpass Filter Based on VO2. 2021 IEEE International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI). :827–831.
.
2021. Reconfigurability is very popular in advanced highly integrated wireless communication circuits and systems, which is valuable for mitigating spectrum congestion and reducing signal interference. To reduce interference and meet the different wireless standards in different countries, frequency reconfigurable filters are promising. Concurrently, due to the conductor and semiconductor properties of VO2 at different temperatures or pressures, the phase transition characteristics of new material VO2 are applied to reconfigurable filters. This paper mainly discusses the application of phase transition characteristics of VO2 materials in filter design and proposes a frequency reconfigurable microstrip bandpass filter based on VO2 materials, in which the microstrip filter adopts the design form of end coupling. Through theoretical calculation, data analysis, and the establishment of the equivalent model of VO2 phase transition, a related design is proposed. An end-coupled microband bandpass filter centered at a reconfigurable frequency (6 GHz to 6.5 GHz) with fractional bandwidth of 2.8% has been designed, which shows consistent match with the expected ones and verify the validity of the proposed method.
vProfile: Voltage-Based Anomaly Detection in Controller Area Networks. 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). :1142–1147.
.
2021. Modern cars are becoming more accessible targets for cyberattacks due to the proliferation of wireless communication channels. The intra-vehicle Controller Area Network (CAN) bus lacks authentication, which exposes critical components to interference from less secure, wirelessly compromised modules. To address this issue, we propose vProfile, a sender authentication system based on voltage fingerprints of Electronic Control Units (ECUs). vProfile exploits the physical properties of ECU output voltages on the CAN bus to determine the authenticity of bus messages, which enables the detection of both hijacked ECUs and external devices connected to the bus. We show the potential of vProfile using experiments on two production vehicles with precision and recall scores of over 99.99%. The improved identification rates and more straightforward design of vProfile make it an attractive improvement over existing methods.
An Authenticated Key Agreement Scheme for Secure Communication in Smart Grid. 2021 International Conference on COMmunication Systems & NETworkS (COMSNETS). :447—455.
.
2021. Rapid development of wireless technologies has driven the evolution of smart grid application. In smart grid, authentication plays an important role for secure communication between smart meter and service provider. Hence, the design of secure authenticated key agreement schemes has received significant attention from researchers. In these schemes, a trusted third party directly participates in key agreement process. Although, this third party is assumed as trusted, however we cannot reject the possibility that being a third party, it can also be malicious. In the existing works, either the established session key is revealed to the agents of a trusted third party, or a trusted third party agent can impersonate the smart meter and establish a valid session key with the service provider, which is likely to cause security vulnerabilities. Therefore, there is a need to design a secure authentication scheme so that only the deserving entities involved in the communication can establish and know the session key. This paper proposes a new secure authenticated key agreement scheme for smart grid considering the fact that the third party can also be malicious. The security of the proposed scheme has been thoroughly evaluated using an adversary model. Correctness of the scheme has been analyzed using the broadly accepted Burrows-Abadi-Needham (BAN) Logic. In addition, the formal security verification of the proposed scheme has been performed using the widely accepted Automated Validation of Internet Security Protocols and Applications (AVISPA) simulation tool. Results of this simulation confirm that the proposed scheme is safe. Detailed security analysis shows the robustness of the scheme against various known attacks. Moreover, the comparative performance study of the proposed scheme with other relevant schemes is presented to demonstrate its practicality.
Bipartite Graph Matching Based Secret Key Generation. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications. :1—10.
.
2021. The physical layer secret key generation exploiting wireless channel reciprocity has attracted considerable attention in the past two decades. On-going research have demonstrated its viability in various radio frequency (RF) systems. Most of existing work rely on quantization technique to convert channel measurements into digital binaries that are suitable for secret key generation. However, non-simultaneous packet exchanges in time division duplex systems and noise effects in practice usually create random channel measurements between two users, leading to inconsistent quantization results and mismatched secret bits. While significant efforts were spent in recent research to mitigate such non-reciprocity, no efficient method has been found yet. Unlike existing quantization-based approaches, we take a different viewpoint and perform the secret key agreement by solving a bipartite graph matching problem. Specifically, an efficient dual-permutation secret key generation method, DP-SKG, is developed to match the randomly permuted channel measurements between a pair of users by minimizing their discrepancy holistically. DP-SKG allows two users to generate the same secret key based on the permutation order of channel measurements despite the non-reciprocity over wireless channels. Extensive experimental results show that DP-SKG could achieve error-free key agreement on received signal strength (RSS) with a low cost under various scenarios.
Boosting Secret Key Generation for IRS-Assisted Symbiotic Radio Communications. 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring). :1—6.
.
2021. Symbiotic radio (SR) has recently emerged as a promising technology to boost spectrum efficiency of wireless communications by allowing reflective communications underlying the active RF communications. In this paper, we leverage SR to boost physical layer security by using an array of passive reflecting elements constituting the intelligent reflecting surface (IRS), which is reconfigurable to induce diverse RF radiation patterns. In particular, by switching the IRS's phase shifting matrices, we can proactively create dynamic channel conditions, which can be exploited by the transceivers to extract common channel features and thus used to generate secret keys for encrypted data transmissions. As such, we firstly present the design principles for IRS-assisted key generation and verify a performance improvement in terms of the secret key generation rate (KGR). Our analysis reveals that the IRS's random phase shifting may result in a non-uniform channel distribution that limits the KGR. Therefore, to maximize the KGR, we propose both a heuristic scheme and deep reinforcement learning (DRL) to control the switching of the IRS's phase shifting matrices. Simulation results show that the DRL approach for IRS-assisted key generation can significantly improve the KGR.
Encryption Algorithms based on Security in IoT (Internet of Things). 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC). :482–486.
.
2021. The Internet is evolving everywhere and expanding its entity globally. The IoT(Internet of things) is a new and interesting concept introduced in this world of internet. Generally it is interconnected computing device which can be embedded in our daily routine objects through which we can send and receive data. It is beyond connecting computers and laptops only although it can connect billion of devices. It can be described as reliable method of communication that also make use of other technologies like wireless sensor, QR code etc. IoT (Internet of Things) is making everything smart with use of technology like smart homes, smart cities, smart watches. In this chapter, we will study the security algorithms in IoT (Internet of Things) which can be achieved with encryption process. In the world of IoT, data is more vulnerable to threats. So as to protect data integrity, data confidentiality, we have Light weight Encryption Algorithms like symmetric key cryptography and public key cryptography for secure IoT (Internet of Things) named as Secure IoT. Because it is not convenient to use full encryption algorithms that require large memory size, large program code and larger execution time. Light weight algorithms meet all resource constraints of small memory size, less execution time and efficiency. The algorithms can be measured in terms of key size, no of blocks and algorithm structure, chip size and energy consumption. Light Weight Techniques provides security to smart object networks and also provides efficiency. In Symmetric Key Cryptography, two parties can have identical keys but has some practical difficulty. Public Key Cryptography uses both private and public key which are related to each other. Public key is known to everyone while private key is kept secret. Public Key cryptography method is based on mathematical problems. So, to implement this method, one should have a great expertise.
Wireless Cybersecurity Education: A Focus on Curriculum. 2021 Wireless Telecommunications Symposium (WTS). :1—5.
.
2021. Higher education is increasingly called upon to enhance cyber education, including hands-on "experiential" training. The good news is that additional tools and techniques are becoming more available, both in-house and through third parties, to provide cyber training environments and simulations at various features and price points. However, the training thus far has only focused on "traditional" Cybersecurity that lightly touches on wireless in undergraduate and master's degree programs, and certifications. The purpose of this research is to identify and recognize nascent cyber training emphasizing a broader spectrum of wireless security and encourage curricular development that includes critical experiential training. Experiential wireless security training is important to keep pace with the growth in wireless communication mediums and associated Internet of Things (IoT) and Cyber Physical System (CPS) applications. Cyber faculty at a university offering undergraduate and master's Cybersecurity degrees authored this paper; both degrees are offered to resident as well as online students.
A Primitive Cipher with Machine Learning. 2021 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :1—6.
.
2021. Multi-access edge computing (MEC) equipped with artificial intelligence is a promising technology in B5G wireless systems. Due to outsourcing and other transactions, some primitive security modules need to be introduced. In this paper, we design a primitive cipher based on double discrete exponentiation and double discrete logarithm. The machine learning methodology is incorporated in the development. Several interesting results are obtained. It reveals that the number of key-rounds is critically important.
Facial Expression Recognition Method Based on Cascade Convolution Neural Network. 2021 International Wireless Communications and Mobile Computing (IWCMC). :1012—1015.
.
2021. In view of the problem that the convolution neural network research of facial expression recognition ignores the internal relevance of the key links, which leads to the low accuracy and speed of facial expression recognition, and can't meet the recognition requirements, a series cascade algorithm model for expression recognition of educational robot is constructed and enables the educational robot to recognize multiple students' facial expressions simultaneously, quickly and accurately in the process of movement, in the balance of the accuracy, rapidity and stability of the algorithm, based on the cascade convolution neural network model. Through the CK+ and Oulu-CASIA expression recognition database, the expression recognition experiments of this algorithm are compared with the commonly used STM-ExpLet and FN2EN cascade network algorithms. The results show that the accuracy of the expression recognition method is more than 90%. Compared with the other two commonly used cascade convolution neural network methods, the accuracy of expression recognition is significantly improved.
On Caching with Finite Blocklength Coding for Secrecy over the Binary Erasure Wiretap Channel. 2021 Wireless Telecommunications Symposium (WTS). :1–6.
.
2021. In this paper, we show that caching can aid in achieving secure communications by considering a wiretap scenario where the transmitter and legitimate receiver share access to a secure cache, and an eavesdropper is able to tap transmissions over a binary erasure wiretap channel during the delivery phase of a caching protocol. The scenario under consideration gives rise to a new channel model for wiretap coding that allows the transmitter to effectively choose a subset of bits to erase at the eavesdropper by caching the bits ahead of time. The eavesdropper observes the remainder of the coded bits through the wiretap channel for the general case. In the wiretap type-II scenario, the eavesdropper is able to choose a set of revealed bits only from the subset of bits not cached. We present a coding approach that allows efficient use of the cache to realize a caching gain in the network, and show how to use the cache to optimize the information theoretic security in the choice of a finite blocklength code and the choice of the cached bit set. To our knowledge, this is the first work on explicit algorithms for secrecy coding in any type of caching network.
Formalization of the Secrecy Capacity in Non-degraded Wiretap Channel. 2021 7th International Conference on Computer and Communications (ICCC). :535–538.
.
2021. Unlike the traditional key-exchange based cryptography, physical layer security is built on information theory and aims to achieve unconditional security by exploiting the physical characteristics of wireless channels. With the growth of the number of wireless devices, physical layer security has been gradually emphasized by researchers. Various physical layer security protocols have been proposed for different communication scenarios. Since these protocols are based on information-theoretic security and the formalization work for information theory were not complete when these protocols were proposed, the security of these protocols lacked formal proofs. In this paper, we propose a formal definition for the secrecy capacity in non-degraded wiretap channel model and a formal proof for the secrecy capacity in binary symmetric channel with the help of SSReflect/Coq theorem prover.